OREGON
PROGRAMMING
LANGUAGES

Lambdi Calculi through the Lens of Linear Logic — Delia Kesner

Lecture 1 - June 30, 2025

Course Introduction

Why lambda calculus We use lambda calculus because it is a foundational model of com-
putation and is used in several programming languages. It has a minimal syntax with maximal
expressiveness, and is the basis for type systems, evaluation strategies and semantics. It is still a
fertile field for research e.g. interaction with category theory, game semantics and more.

What is Linear Logic Linear logic is a resource aware logic (it cares about how resources
are handled), there exist no weakening or contraction in it. To recover weakening and contraction
there are two exponential modalities: why not ¢ and of course/bang /. Formulas must be
marked with exponentials to be erased/weakened or duplicated/contracted. And this will result in
Multiplicative Exponential Linear Logic (MELL).

Why linear logic But why do we use linear logic? It refines intuitionistic and classical logic,
controls duplication and erasure and naturally captures resource-sensitive computation. It also
unlocks new insights of computations e.g. proof-nets (a graphical syntax), call-by-name vs call-
by-value as logical phenomena and implicit complexity and cost models. It also provides a fruitful
perspective for revisiting old ideas, like Offering a fine-grained look at evaluation and typing, and
inspiring new calculi and type systems.

Goals of the Course The goals of the lecture series are to explore lambda calculi variants
inspired by linear logic EL like their syntax, semantics, operational properties, implementations and
subsuming frameworks. And understand the structure of computation through linear logic types
(intersection/quantitative types) and provide resource-aware tools for modern theoretical research
(observational equivalence, inhabitation, genericity).

1Will not go into linear logic but how one applies it.

Lambda Calculi through the Lens of Linear Logic

Delia Kesner

Course outline:

e Day 1: Linear Logic Proof-Nets

e Day 2: A Lambda-Calculus Inspired from Linear Logic Proof-Nets

e Day 3: Intersection/Quantitative Types

Day 4: A Subsuming Framework Inspired from Linear Logic

Day 5: Observational Equivalence By Means of Intersection Types

Contents for Day 1

(1 Multiplicative Linear Logic (MLL)| 3
[LI MLL Formulasl 3
(I.2 MLL (Two-sided) Sequent Presentation] 3
(I.3 MLL (Unilateral) Sequent Presentation| 4

2 MLL Proof-Nets 4

B _PN’s Correctness criterial 6

[4 Multiplicative Exponential Linear Logic (MELL)| 7
M1 MELL Formulas 7
.2 MELL (Two-sided) inference rules| 8
4.3 MELL (unilateral) inference rules{. 9
44 MELL Proof-Netsl oo o 9
4.5 Operational semantics| L 10
4.6 MELL PN Properties| o 11

[References| 12

T gsggg:MMING
LANGUAGES
Compiled By: 2 Y

Barttomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

1 Multiplicative Linear Logic (MLL)

1.1 MLL Formulas

Atomic Formulas Let p denote a positive atomic formula. We use p (underlined p) to represent
its negation, i.e., a negative atomic formula. The negation operator L is defined as an involutive
operation.

(p)*

Grammar of MLL Formulas In Multiplicative Linear Logic (MLL), the tensor connective (®)
means “both resources are given together and must be used together,” while the par connective
(%) means “either resource may be used, but the choice is determined externally.”

Az=p|p|A®B|A%¥B

Negation Rules Negation in MLL flips the role of resources: it turns offering into demanding,
and transforms joint usage (®) into independent alternatives (%), and vice versa, always preserving
the idea that negating twice brings you back to the original resource.

()" =p (P =p
(A® B)* = A1®3B*, (ABB)*+ = At @ B+
(At =4

1.2 MLL (Two-sided) Sequent Presentation

Sequents are of the form I' = A. The sequent rules of Multiplicative Linear Logic (MLL) manage
how formulas are introduced and manipulated under strict resource discipline. The tensor rules (®)
express simultaneous availability of resources, while par rules (%) capture choices made externally.
Cut and axiom handle duality and identity, and permutation rules allow rearrangement without
altering logical content—yet unlike classical logic, structural rules like weakening and contraction
are absent, reflecting that each resource must be used exactly once.

/ !/
(ax) I'HAA AT FA
Ar4 T, F A, A

(cut)

; gsgggl’:MMING
Compiled By: 3 Y
Barttomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

DABIEA o DEAABAN
I.BAT'FA P TEA, B AAN
T AFA T, BFA I+ A B, A
Ve rrAsp.A R
I ABFA TEAA T'FBA
)) L)) R,
T AecBra (@D TTrAoBan R

1.3 MLL (Unilateral) Sequent Presentation

With MLL we use a unilateral sequential presentation. We take anything from the left hand side,
move it to the right hand side and negate it. In this way, we formulate the same thing but in a
unilateral form, for example:

——— (ax) FAT FALA . FT,4,B,A (perm)
- AL A “TA (cut) FT,B.A,A P
CABT FAT EBA
- AxB,T PV FA® B, T,A O

2 MLL Proof-Nets

An issue with this sequent presentation is that any possible sequent derivation captures a particulate
constructor history (there are different possible sequentializations). Consider how many proofs
ending in - (A1 Ag), ..., (Agp_1D Agy,) if we start from a derivation of A, ..., Ag,. We would have
n! possible derivations.

There is a better representation of proof derivation that abstracts such bureaucracy, namely, MLL
Proof-Nets (PN).

An MLL PN with conclusions Al ..., A, is a graph defined by induction as follows:

; gsgggl’:MMING
Compiled By: 4 Y
Barttomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

e For every MLL formula A we have a PN with conclusion A+, A having the form

At A

e Given a PN with conclusions I', A, B on the left we can construct the PN with conclusions
I'; A% B on the right.

e Given a PN with conclusions I', A and a PN with conclusions A, B on the left, we can construct
the PN with conclusions I'; A ® B, A on the right.

N
T

e Given a PN with conclusions I', A and a PN with conclusions A, A+ on the left, we can
construct the PN with conclusions I', A on the right.

— = T

r

r A At A

; gsgggl’:MMING
Compiled By:) Y
Barttomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

The nodes at the end of the graph is called the interface. Note that the order of appearance for
the variables does not matter in the graphs i.e. I'; A = A, T".

With proof nets we have no bureaucracy but also no history (no trace of the sequentializaiton /constructor
history). In order to perform the cut proof above we need two individual sub proofs.

Pre-proof nets The pre proof nets (Pre-PN) solve this and are generated by the following links
(see graph Fig below), and must satisfy the conditions:

e Every formula is the conclusion of exactly one link.

e Every formula is the premise of at most one link.

(Axiom) (Cut) (Par) (Tensor)
A B A B
A A”
A* A L@J ABB A®B

Note that a Pre-PN can be a valid PN.

3 PN’s Correctness criteria

How do we decide when something is or is not a proof net? With a correctness criteria, a method
to determine if an arbitrary graph is a proof net or not. There are several methods for this: Long
trip 1], acyclic-connected [2], and, contractibility [3].

Long trip: A Pre-PN is a PN iff for every possible configuration of the links there is a unique long
trip (i.e. a cycle visiting each node exactly once in each direction)

Acyclic-connected: A Pre-PN is abstracted by a paired graph S equipped with: a set V of
vertices, a set E of edges and a set C(S) of pairwise disjoint pairs of co-incident (one node in
common) edges, marked with a red arc.

For every Pre-PN P we define a paired graph P~ by using the following constructions. We do not
abstract away the operations and we only use the graph structure to determine correctness.

; gsgggl’:MMING
Compiled By: 6 Y
Barttomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

p AR

T enSoR

AVY

Contractability, we consider the following rewriting system with two rules.

= —_:bo

Given a paired graph S:

e The first rule can only be applied to a pairwise disjoint pair of edges of C(S) connecting the
same two nodes

e The second rule can only be applied to an edge (not in C(S)) connection two different nodes

Theorem: a Pre-PN P is a PN iff P~ is contractible (i.e. reduces to a single node), it executes in
quadratic time.

4 Multiplicative Exponential Linear Logic (MELL)

4.1 MELL Formulas

An expansion of MLL with the following formulas and sequent presentations, where we can weaken,
contract, derelict, by explicitly adding an ! or 7

Atomic Formulas The atomic formulas for MELL is exactly the same as the ones in MLL. p is
a positive atomic formula, whilst p is its negation, i.e. a negative atomic formula.

; gsgggl’:MMING
Compiled By: 7 y
Barttomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

Grammar of MELL Formulas MELL extends MLL with two new connectives to include clas-
sical and intuitionistical logic’s notion of using a formula any number of times. Hence, the unary
connectives | (named bang) and 7 denote that a formula can be used for an unbounded number of
times.

pl|A|A®B |44

Negation rules MELL include two additional negation rules that MLL does not have to include
the new unary connectives (! and 7).

pt=p pr=p
(ABB)* := At @ B* (A® B)* := At Bt
(74)+ =14+ (14)t =24+
(ANt =4

4.2 MELL (Two-sided) inference rules

THFAA T, AFA
ax cut
AF A I.T'FA A
I ABFA T'HABA
———perm L ——perm R
I.B.AFA T'FB A A
T AFA T'BFA AT TFBA
; —par L par R
I.T', ASBF A, A T'F A%B, A
TAFA T',BFA Tk A BA
- — tensor L — tensor R
I, T, A2 BFA,A I'FA®B,A
PeA o DlAMEA L PAFA IDARA
E—— - ! 11 ErEe— T S —
TIAFA ° riAara - ° TIAFA T, 74 F7A
rea DRIAPAA rAA T A7A
TH?A A o reeaa " rreea A o T HIA ?A

Formulas starting with ’!” operator may be copied or discarded on the left side of the . Formulas

199

Compiled By:
Barttomiej Krdlikowski, Joel Nyholm, Xuyang Li

OREGON
PROGRAMMING
LANGUAGES

Lambda Calculi through the Lens of Linear Logic

Delia Kesner

4.3 MELL (unilateral) inference rules

HAT F AL A

——ax t
AL A FT.A e
FAT FBA
NnSor
FA®B.TAA O0°
AT
oA o

FT,A,B,A A BT
——— Perm —————par
FT,B, A, A - AXB.T
- T F?4,24,T
—weak — cont
F7AT F2AT
- AT
A, cont

4.4 MELL Proof-Nets

Here, we can also represent derivations in unilateral style as proof-nets too. To this end, we must
expand the graphical syntax. For each MLL connective we just copy corresponding MLL rules.
Now we just need to introduce one new rules for each of our new connective, that is ’!” and ’7’.

(Axiom) (Cut) (Weakening) (Contraction)
7A 7A
P ECE
P N)
(Par) (Tensor) (Dereliction) (Bang)

A B A B A
®
A®B A®B 74

Dereliction allows us to always create a ’?7’.
Bang allows to put into a box (i.e. ’!") every resource that does not depend on its context. Here we

OREGON
PROGRAMMING
LANGUAGES

Compiled By: 9
Barttomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

need the rest of the context to be under ’7’, because A may later get copied and discarded, so the
same thing would happen to the resources it depends on. Since we do not know which resources
(which B;s) A depends on, we have to put all of them under the ’?’.

A MELL PN with conclusions Ay, ..., A, is defined by induction as follows:

e Every MLL PN is a MELL PN
e Given a PN with conclusion I" on the left, we can construct the PN with conclusions I', 7 A

e Given a PN with conclusion I', 7A,?A on the left, we can construct the PN with conclusions
r,7A

Given a PN with conclusions I', A on the left, we can construct the PN with conclusions I', 7A
on the right.

Given a PN with conclusions ?T", A, we can construct the following PN with conclusions ?T", ! A

4.5 Operational semantics

There are structural and cut elimination transformation. The structural transformations are equiv-
alences and additional rewriting rules. The cut elimination have two sub-categories multiplicative
rewriting rules (does not involve boxes) and exponential rewriting rules (involving boxes)

See S]ideS p44 - 53 at https://www.cs.uoregon.edu/research/summerschool/summer25/_lectures/Kesner_Lessonl.pdf fOl" the COIOI" COded
rewriting rules in sequent and graphical representations.

The reduction relations for MELL PN have the following relations

R :=C(a),C(),C(w,b),C(d,b),C(c,b),C(b,b),w —bw — ¢
&= A(c), I0(c)

where C'(x) are the cut elimination rules, w — x are the rewriting rules and £ holds all equivalence
relations

Reduction relation is the closure by all PN context of the rules in R. The congruence is the
reflexive, symmetric, transitive, closed by PN contexts relations on PN generated by the equation
£. However, to guarantee terminations we need types.

OREGON
PROGRAMMING
LANGUAGES

Compiled By: 10
Barttomiej Krdlikowski, Joel Nyholm, Xuyang Li

https://www.cs.uoregon.edu/research/summerschool/summer25/_lectures/Kesner_Lesson1.pdf

Lambda Calculi through the Lens of Linear Logic Delia Kesner

4.6 MELL PN Properties

Definitions reduction relations:
e A reduction relation S is said to be confluent iff for every ¢, u, v such that t =% vandt =5 v
there us ¢’ such that u —% ¢ and v =% ¢/

e A reduction relation S is said to be terminating iff for every t there is no —g-sequence
starting at ¢ (i.e. every —g-reduction sequence starting at any term is terminating)

e A reduction relation S is said to be strongly terminating iff every typed object ¢ is
terminating
Theorem (confluence): The reduction —g ¢ is confluent on MELL PN

Theorem (strong normalization): The reduction —*R/¢ is terminating on MELL PN (i.e. —R/E
is strongly normalizing)

; gsgggl’:MMING
Compiled By: 11 Y
Barttomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

References

[1] J.-Y. Girard, “Linear logic,” Theoretical Computer Science, vol. 50, no. 1, pp. 1-101, 1987, ISSN:
0304-3975. DOIL: https://doi.org/10.1016/0304-3975(87)90045-4. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0304397587900454.

[2] V. Danos and L. Regnier, “The structure of multiplicatives,” Archive for Mathematical Logic,
vol. 28, no. 3, pp. 181-203, Oct. 1989, 1sSN: 1432-0665. DOI: 10.1007/BF01622878. [Online].
Available: https://doi.org/10.1007/BF01622878.

[3] V. Danos, “La logique linéaire appliquée & I’étude de divers processus de normalisation (prin-
cipalement du lambda-calcul),” 1990PA077188, Ph.D. dissertation, 1990. [Online|. Available:
http://www.theses.fr/1990PA077188.

OREGON
PROGRAMMING
LANGUAGES

Compiled By: 12
Barttomiej Krdlikowski, Joel Nyholm, Xuyang Li

https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://www.sciencedirect.com/science/article/pii/0304397587900454
https://doi.org/10.1007/BF01622878
https://doi.org/10.1007/BF01622878
http://www.theses.fr/1990PA077188

	Multiplicative Linear Logic (MLL)
	MLL Formulas
	MLL (Two-sided) Sequent Presentation
	MLL (Unilateral) Sequent Presentation

	MLL Proof-Nets
	PN's Correctness criteria
	Multiplicative Exponential Linear Logic (MELL)
	MELL Formulas
	MELL (Two-sided) inference rules
	MELL (unilateral) inference rules
	MELL Proof-Nets
	Operational semantics
	MELL PN Properties

	References

