
Lambdi Calculi through the Lens of Linear Logic — Delia Kesner

Lecture 2, A Lambda-Calculus Inspired from Linear Logic Proof-Nets - July 1, 2025

What this talk is about We want to find a correspondence between Simply-Typed λ-Calculus
and Proof-Nets defined in previous lecture. Girard’s intuitionistic MELL proof-nets and the pn-
calculus offer two perspectives on computation, aligned across five dimensions. In terms of resource
management, only boxes in proof-nets and only arguments in pn-calculus may be erased or dupli-
cated. Both systems distinguish between linear and non-linear contexts: linear contexts lie outside
boxes or arguments, while non-linear ones are internal. Reduction in proof-nets is local and avoids
bureaucratic overhead, whereas in the pn-calculus it operates across contexts and is free of com-
mutative rules. This leads to different operational styles—local rewriting in the graphical setting
versus at-a-distance reduction in the syntactic one. Finally, each system serves a different purpose:
proof-nets support semantical studies and abstract reasoning, while pn-calculus is better suited for
implementation concerns and inductive analysis.

Contents

1 λ−Calculus: A Brief Reminder. 2

2 A Lambda Calculus with Explicit Substitutions (pn-calculus) . 3

2.1 pn-Calculus Reduction Rules . 4

3 Static and Dynamic Translation to MELL . 4

3.1 Explicit Substitutions - Multiplicative System . 5

3.2 Translation principles . 5

3.3 Equivalence on pn-terms . 6

3.4 Dynamic Translation: Term vs Proof-Net Reductions . 7

4 Properties of the Calculus . 10

5 Conclusion . 11

References. 12

1

Lambda Calculi through the Lens of Linear Logic Delia Kesner

1 λ−Calculus: A Brief Reminder

Syntax of STLC (Simply-Typed Lambda-Calculus)

t, u ::= x | λx.t | tu
C ::= ⋄ | λx.C | C t | t C

We also define following functions:

• fv(v) is the set of free variables of v

• bv(v) is the set of bound variables of v

Substitution and context application For this and other calculi, we use the following con-
ventions:

• t Jx\uK is the capture-avoiding substitution, that replaces all free occurrences of x in t by u.

• we work modulo alpha-conversion, i.e.: λx.t ≡ λy.t{x\y} with y fresh.

• C ⟨t⟩ is a term created by replacing the hole (⋄) with t, allowing binders in C to bind any
free variables of t

• C ⟨⟨t⟩⟩ is like C ⟨t⟩, but we do not allow for capture (it is undefined in such cases)

Operational Semantics We only have one rewriting rule the β-reduction:

(λx.t)u 7→β t Jx\uK

The reduction relation →β is generated by the relation 7→β closed under all contexts C if:

∀C, t, u.t 7→β u =⇒ C ⟨t⟩ →β C ⟨u⟩

Examples

• Erasing: (λy.x)z →β x

• Duplication: (λy.yy)z →β zz

• Non-termination: (λy.yy)(λy.yy) →β (λy.yy)(λy.yy) →β . . .

• Reduction under a non-trivial context (a lambda), where Id := λx.x:

λz.(λx.y)(Id Id) →β λz.(λx.y)Id →β λz.y

Compiled By:

Bartlomiej Królikowski, Joel Nyholm, Xuyang Li
2

Lambda Calculi through the Lens of Linear Logic Delia Kesner

Types in STLC

A ::= ι | A → B

Typing rules

x1 : A1, . . . , xn : An ⊢ xi : Ai
(axiom)

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A → B
(→ intro)

Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ tu : B
(→ elim)

We should notice here that the (axiom) rule implies weakening and the (→ elim) rule implies
contraction. We do not want to have these properties, or at least we want to make their use
explicit, but we still want to keep other properties of STLC, like Confluence, Subject Reduction
and Strong Normalization. To that end, we define intermediate calculus, that can later be translated
directly into Proof-Nets.

2 A Lambda Calculus with Explicit Substitutions (pn-calculus)

To go from λ-calculus to MELL Proof-Nets, as seen in lecture 1. We use an intermediate language
(i.e. λ-calculus ⇒ Intermediate language ⇒ MELL Proof-Net). The language needs to handle
lambda-terms with explicit substitution, equivlence, reduction rules and explicit management of
resources (erasure and duplication). There are several alternatives (Λ-calculus, Linear Substitution
Calculus, and more), but we will focus on pn-calculus, with the following syntax:

Terms and Term contexts

t, u, v ::= x | λx.t | tu | t [x\u]
C ::= ⋄ | λx.C | Ct | tC | C [x\t] | t [x\C]

where

• t [x\u] is an Explicit Substitution

• we extend alpha-conversion with: t [x\u] ≡ t Jx\yK [y\u]

We will call a term pure if it contains no explicit substitution.

Compiled By:

Bartlomiej Królikowski, Joel Nyholm, Xuyang Li
3

Lambda Calculi through the Lens of Linear Logic Delia Kesner

Contexts We want to define the reduction relation by cases on the structure of the whole program,
rather than locally. This creates the need for a more refined definition of contexts. We split them
into linear contexts, in which the hole does not appear on the position of a function argument
or inside the substitution, so they will never cause copying of the inserted term, and non-linear
contexts, that may copy a term. We also distinguish substitution contexts as a subset of the
linear contexts.

• Linear: H ::= ⋄ | λx.H | Ht | H[x\t]

• Non-Linear: A ::= t ⋄ | t[y\⋄]

• Substitution: L ::= ⋄ | L[x\t]

2.1 pn-Calculus Reduction Rules

There are only five operational rules for the pn-reduction relation where the β-reduction rule is
decomposed into five atomic actions. The rules operate at a distance to bypass the linear and
non-linear contexts. Note that only arguments can be erased/duplicated.

(Fire) L⟨λx.t⟩u →dB L⟨t[x\u]⟩
(Erase) t[x\u] →gc t if x /∈ fv(t)

(Linear Subst.) H⟨x⟩[x\u] →lsubs H⟨u⟩
(Jump) H⟨A⟨t⟩⟩[x\u] →arg H⟨A⟨t[x\u]⟩⟩

(Duplicate) H⟨A⟨t⟩⟩[x\u] →dup H⟨A[x\u]⟨t⟩[x\u]⟩

3 Static and Dynamic Translation to MELL

When conducting the static translations we need think about terms, arguments and boxes as follows:

• Linear context: terms (outside arguments) → Proof-Nets (outside BOX)

• Non-linear context: terms (arguments) → Proof-Nets (inside BOX)

• Arguments of applications and substitution → BOX (can be erased/duplicated)

Compiled By:

Bartlomiej Królikowski, Joel Nyholm, Xuyang Li
4

Lambda Calculi through the Lens of Linear Logic Delia Kesner

3.1 Explicit Substitutions - Multiplicative System

To use explicit substitutions without weakening and contraction we introduce these rules in the
multiplicative system. However, we could also use the additive system, since they are equivalent.
Note that if Γ ⊢ t : A then fv(t) = dom(Γ).

ax
x : A ⊢ x : A

Γ ⊢ t : A → B ∆ ⊢ u : A
→ e

Γ ∪∆ ⊢ tu : B

Γ, x : A ⊢ t : B
i1

Γ ⊢ λx.t : A → B

Γ, x : A ⊢ t : B x /∈ fv(t)
i2

Γ ⊢ λx.t : A → B

Γ ⊢ u : B ∆, x : B ⊢ t : A
cut1

Γ ∪∆ ⊢ t [x\u] : A
Γ ⊢ u : B ∆ ⊢ t : A x /∈ fv(t)

cut2
Γ ∪∆ ⊢ t[x\u] : A

3.2 Translation principles

Translation of types The static translations introduces two new notations: the superscript
minus and plus. The minus (i.e. A−), means that the type resides at the left of the turnstile,
whilst the plus (i.e. A+) reside to the right. Also note the unary connectives ! (named bang) and
? denoting that a formula can be used for an unbounded number of times.

ι+ = ι

(A → B)+ =?(A−)

&

B+

A− = (A+)⊥

Remark

(?(A−)

&

B+)⊥ =!A+ ⊗B−

(?A−)⊥ =!A+

Translation of derivations Let Γ = x1 : B1, ..., xn : Bn then Γ ⊢ t : A translates to a MELL

Proof-Net: (Γ ⊢ t : A)◦ with interfaces ?Γ− , A+ where ?Γ− means ?B−
1 , ..., ?B

−
n

Compiled By:

Bartlomiej Królikowski, Joel Nyholm, Xuyang Li
5

Lambda Calculi through the Lens of Linear Logic Delia Kesner

Example translation of rules Two examples translation of the rules (Section 3.1), all rule
translations can be found in the slides p.29-34 at https://www.cs.uoregon.edu/research/summerschool/summer25/_lectures/

Kesner_Lesson2.pdf

3.3 Equivalence on pn-terms

For pn-terms we use (Regnier’s definition [1] of) σ-equivalence:

λx.t ≡ λy.t{{x\y}} y fresh

t[x\u] ≡ t{{x\y}}[y\u] y fresh

H ⟨t⟩ [x\u] ≡ H ⟨t[x\u]⟩ if x /∈ fv(H)and no capture of free variables

Paticular instances

t[y\v][x\u] ≡ t[x\u][y\v] if y /∈ fv(u)&x /∈ fv(v)

(λy.t)[x\u] ≡ λy.t[x\u] if no capture of free variables

(tv)[x\u] ≡ t[x\u] v if x /∈ fv(v)

Relation between pn-calculus and Linear logic Proof-Net Since we have a translation
from pn-calculus to MELL Proof-Nets we will have two notions of equivalence. For pn-terms we
have Reigner’s σ-equivalence (≡). Whilst for the Proof-Nets we have structural equivalence (≡ϵ). A
σ-equivalence holds if and only if its corresponding structural equivalence holds given its translation.

Compiled By:

Bartlomiej Królikowski, Joel Nyholm, Xuyang Li
6

https://www.cs.uoregon.edu/research/summerschool/summer25/_lectures/Kesner_Lesson2.pdf
https://www.cs.uoregon.edu/research/summerschool/summer25/_lectures/Kesner_Lesson2.pdf

Lambda Calculi through the Lens of Linear Logic Delia Kesner

3.4 Dynamic Translation: Term vs Proof-Net Reductions

Dynamic part of the translation consists on showing that reduction relation is preserved by the
translation, i.e. that for every reduction rule relating terms in our intermediate calculus, we have
a reduction rule that relates result graphs of the translation. The exact mapping of rules is sum-
marized below.

pn-term reduction Proof-net equivalent

Fire a redex Multiplicative Cut Rules
Erase Weakening-Box
Linearly substitute Dereliction-Box
Duplicate Contraction-Box
Jump into argument Box-Box

Most of the rules are mapped one-to-one. The only exception are multiplicative cut rules. This
gives us a fine-grained interpretation of Intuitionistic Proof-Nets.

Erasure rules
t [x\u] 7→gc t where x ̸∈ fv(t)

maps to

Compiled By:

Bartlomiej Królikowski, Joel Nyholm, Xuyang Li
7

Lambda Calculi through the Lens of Linear Logic Delia Kesner

Explicit substitution for an unused variable translates to a proof-net where the wire corresponding
to the variable connects to W and cut nodes. This leads us to a proof-net redex where we can
use C(w, b) rule. We can drop substitutions for variables that are not free. Likewise, if we proved
something via an indirect weakening (i.e. using a proposition that we proved via weakening), we
can just skip the intermediate proof and use weakening directly.

Linear substitution rule

H ⟨x⟩ [x\u] 7→lsubs H ⟨u⟩ where x ̸∈ fv(H)

maps to

Here the variable substituted for in the translated term is used linearly. This means that its wire
in the result of translation is not touched by the proof-net constructors, therefore it must start in
the dereliction (D) node coming from the translation of the axiom rule. This wire is connected by
translation of the cut1 rule typing the explicit substitution, and forms a redex with the ! node.

Duplication rules

H ⟨A ⟨t⟩⟩ [x\u] 7→lsubs H
〈
A[x\u] ⟨t [x\u]⟩

〉
where x ̸∈ fv(H), x ∈ fv(A) ∩ fv(t)

Compiled By:

Bartlomiej Królikowski, Joel Nyholm, Xuyang Li
8

Lambda Calculi through the Lens of Linear Logic Delia Kesner

maps to

Variable x in the term on the left may be used both by t and by A, what translates to a term
where the wire representing the variable connects to the copying node. Such proof-net reduces
by duplicating subproofs related to the type of x and that corresponds to substituting u for x
separately in A and in t.

Jump rule

H ⟨A ⟨t⟩⟩ [x\u] 7→arg H ⟨A ⟨t [x\u]⟩⟩ where x ∈ fv(t), x ̸∈ fv(H) ∪ fv(A)

maps to

The left-hand side of the relation on terms translates to a proof-net where wires corresponding to
the outputs of t and u are boxed (i.e. connected to ! vertices). In this case C(b, b) reduction can
be applied and the subgraph non-free box (resulting from the translation of u) is pushed into the
subgraph resulting from the translation of t.

Compiled By:

Bartlomiej Królikowski, Joel Nyholm, Xuyang Li
9

Lambda Calculi through the Lens of Linear Logic Delia Kesner

4 Properties of the Calculus

Full Composition The calculus supports full composition of substitutions:

t[x\u] −→∗ t{{x\u}}
That is, every term with an explicit substitution reduces to the corresponding term where the
substitution is completely performed.

Strong Bisimulation The syntactic equivalence relation ≡ on pn-terms is a strong bisimulation
with respect to the reduction relation →pn:

t ≡ u and t →pn t′ ⇒ ∃u′ such that u →pn u′ and t′ ≡ u′

Confluence The pn-calculus is confluent on both closed and open terms, modulo the equivalence
relation ≡. That is, if a term reduces to different terms, there exists a common reduct modulo ≡.

Normalization Properties

• PN: The new reduction relation enjoys preservation of β−normalization: if t is β−normalizing
(β −N), then t is also pn−normalizing (pn-N).

• SN: (Simply) typed pn-terms are pn-normalizing

Compiled By:

Bartlomiej Królikowski, Joel Nyholm, Xuyang Li
10

Lambda Calculi through the Lens of Linear Logic Delia Kesner

Discussion

Designing a calculus of explicit substitutions that is both confluent on open terms and enjoys the
preservation of β-normalization (PN property) was a long-standing open problem. The classical
λσ-calculus by Abadi-Cardelli-Curien-Lévy fails to satisfy the PN property (a result due to Melliès).
Other calculi have been proposed with similar goals, but the pn-calculus stands out due to its tight
and faithful correspondence with Girard’s proof-nets.

5 Conclusion

The approach presented in this lecture bridges the gap between term syntaxes and graphical for-
malisms in the context of functional programming. It introduces a new hybrid notion of substitution
that blends structural induction on the shape of terms with induction on the number of free vari-
ables to be substituted. This refined notion allows the term calculus to retain all the desirable
properties one would expect from a well-behaved system. Furthermore, the calculus serves as a
precise formal tool to explain the operational behavior of Girard’s intuitionistic linear logic proof-
nets. While other approaches are possible—such as adding explicit weakening and contraction
rules to the term syntax or modifying proof-net reductions using implicit quantification—these al-
ternatives either sacrifice the one-to-one dynamic correspondence with proof-nets or lead to more
complex operational semantics. Finally, one promising direction for extension is toward classical
logic, in particular through the use of polarized proof-nets.

Compiled By:

Bartlomiej Królikowski, Joel Nyholm, Xuyang Li
11

Lambda Calculi through the Lens of Linear Logic Delia Kesner

References

[1] L. Regnier, “Une équivalence sur les lambda- termes,” Theoretical Computer Science, vol. 126,
no. 2, pp. 281–292, 1994, issn: 0304-3975. doi: https://doi.org/10.1016/0304-3975(94)
90012-4. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
0304397594900124.

Compiled By:

Bartlomiej Królikowski, Joel Nyholm, Xuyang Li
12

https://doi.org/https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/https://doi.org/10.1016/0304-3975(94)90012-4
https://www.sciencedirect.com/science/article/pii/0304397594900124
https://www.sciencedirect.com/science/article/pii/0304397594900124

	-Calculus: A Brief Reminder
	A Lambda Calculus with Explicit Substitutions (pn-calculus)
	pn-Calculus Reduction Rules

	Static and Dynamic Translation to MELL
	Explicit Substitutions - Multiplicative System
	Translation principles
	Equivalence on pn-terms
	Dynamic Translation: Term vs Proof-Net Reductions

	Properties of the Calculus
	Conclusion
	References

