OREGON
PROGRAMMING
LANGUAGES

Lambda Calculi through the Lens of Linear Logic — Delia Kesner

Lecture 3, Quantitative Types - July 2, 2025

Contents

1 VIOHVATIONS, - - - oo

2 |From Simple Types to Quantitative Types| ..

3 |Quantitative Types for Lambda Calculus| ...

3.1 Gardner’s System FH|. L L L e e s e e e e e e e

3.2 System H with a Single Counter| L e

[3.3 Example: Church Numerals| 00000000 0o

4 [Quantitative Types and Inhabitation|

5 |Quantitative Types for Measuring|

5. plit measures| L L L L L L e e e e e e e e e

[2.4 System SH: Split Measures| o oo oo oo o oo oo

5.5 Termination in System SH| L L L L oL L oL o e e e e e e e e s e

6 |Conclusion and future Works| ..

Lambda Calculi through the Lens of Linear Logic Delia Kesner

1 Motivations

Quantitative information plays a crucial role in computer science, encompassing aspects such as
time, space, probability, and cost. This type of analysis is becoming increasingly important across
a variety of domains, including automata theory, graph algorithms, logic, and general algorithm
design. It also finds applications in areas such as verification, model-checking, programming, and
theorem proving, as well as in performance measurement, network analysis, and data mining.
Within the theory of programming languages, quantitative properties of programs can be rigorously
captured using type systems or relational models. This leads to the study of quantitative type
systems, which aim to formalize and analyze the principles, properties, and applications of such
systems to better understand and manage quantitative aspects of program behavior.

2 From Simple Types to Quantitative Types

These are two approaches to typing systems. Simple types assign one type per term, making type
checking decidable. Quantitative types, such as the intersection type, allows a term to have several
types simultaneously, increasing expressiveness but making the typing system undecidable.

2.1 Simple Types

Grammar: A, B:=1|A— B
Typing rules:

I'z:A+t: B '-t:A— B I'tu:A
—————— VAR ABs App
Ie:Atz: A 'FXxt:A— B I'Ftu:B

Notes: Simple types are monomorphic and decidable. Polymorphic extensions retain decidability.

2.2 Intersection Types

An intersection A N B is possible if we have A and B, with this we can capture a form of finite
polymorphism. The typing system becomes more expressive compared to simple types. However,
the typing system becomes undecidable, hence, it is not a typing system that is supposed to be
used in a concrete programming language, but to make semantic interpretations for computation.

Grammar: A, B:=1|A— B|ANB

Y: gsggg:mme
Compiled By: 2
Bartlomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

Key rule:
t: A t:B
t:ANB

INTER

2.3 Intersection constructor

There are several ways to define the intersection constructor. The one we use is both associative
and commutative.

(ANB)NC ~AN(BNCQC) Associativity
ANB~BnNA Commutativity

There is also the notion of idempotent and non-idempotent intersection types. The idempotent have
unbounded resources and uses qualitative properties (e.g. yes or no). Whilst, the non-idempotent
type have finite resources and quantitative properties (e.g. bounds and measures), we can think of
the non-idempotent as bounded linear logic.

Idempotent: ANA~A (qualitative properties)

Non-idempotent: ANAx A (quantitative properties via multi-sets)

3 Quantitative Types for Lambda Calculus

3.1 Gardner’s System H

We use Gardner’s system H, where the multi-set are the intersections. From a quantitative linear
logic intuition, we can think about a multi-set [A1, ..., A,] as the tensor 4 ® ... ® A,, and we can
think of M — A as M1t A

Grammar:
Au=1| M — A
M = [Aslier
Judgment form: Note that M; denote the multi-type for each variable x; and A is the type for
the term ¢
x1: My, . xp My EL A

Y: gsggg:mme
Compiled By: 3
Bartlomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

Rules:

I'kt: A (LiEt:Ajer
—— AX Fun MANY
z:[AlFx: A F'\zkFXzt:T(zx) > A UierTi bt 2 [Af]

I't: M — B ArFu: M
TUARtu: B

Aprp

3.2 System H with a Single Counter

The System H can be extended to encompass counters, that counts the size of the proof derivation.
The counter increments on all rules except (many).

Notation
gD FCCng: A

Where: II is a (tree) derivation, S is a type system, I is a set of type declarations, (C1, ...,C),) are
counters, t is a term and A is a type. Note that IT, S and (Cy, ..., C,) are sometimes omitted when
their meaning is trivial.

Rules
¢ A
ax =
c:[AFD z: A D\ 2z HCO) \et:T(2) - A
(T FO ¢ Aier T M- B Ay M
many —e

Uierl; F(—HGIC’") t: [Ai]ie] I'u A(Cl+02+1)tu : B

3.3 Example: Church Numerals

Consider that we let 3 := Af.Az.f(f(fx)) and let B := [A] — A Then we have the following
derivation:

Y: gsggg/’:nmme
Compiled By: 4
Bartlomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

x:[AlFx:A
f:Brf:[A] = A x:[A] F x: [A]
fo[Bl,x:[AlF fx:A
f:Brf:[A] - A f o [Bl,x:[Al+ fx: [A]
S [B,BLx:[AlF f(fx)): A
f:Brf:[A]—A f BBl x: [AlF f(fx)) : [A]

S [B,B,BlLx: [AlF f(S(fX)) : A
£ ¢ [B,B, Bl F Ax.f(f(f2))) : [A] > A
F3:[B,B,B] = [A] - A

The conclusion - 3 : [B, B, B] — [A] — A is the case when we have a non-idempotent /quantitative
typing by using the multi-sets, where 3 is typed with an intersection type [B, B, B]. If we used
idempotent /qualitative types using sets then the conclusion would have been 3 : {B} — {4} — A

4 Quantitative Types and Inhabitation

Dual Problems There is a conceptual duality between the Typing Problem and the Inhabi-
tation Problem, by emphasizing which elements of the typing judgment

I'Ft: A

are given and which must be synthesized, as well as the common foundational components shared
by both problems.

Typing Problem.
r7et: A?

In this setting, the term ¢ is given, and we are tasked with finding both a context I' and a type A
such that the judgment holds. This process requires two ingredients:

e The term language determines the syntactic structure and grammar of valid terms (e.g.,
variables, abstractions, applications).

e The typing system specifies the rules used to assign types to terms — for instance, function
types, intersection types, or quantitative types.

Y: gsggg/’:nmme
Compiled By:)
Bartlomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

Only by knowing both the term language and the typing system can we determine whether there
exists a suitable typing derivation for ¢.

Inhabitation Problem.
T'Ht?: A

Here, the context I' and the type A are given, and the goal is to construct or search for a term ¢
that inhabits the type A under the assumptions in I". Again, this depends on:

e The term language, which dictates what terms may be constructed.

e The typing system, which verifies whether a candidate term truly inhabits the target type.
These problems are closely related to:

e Proof Search in logical systems.

e Program Synthesis from types.

Decidability Landscape The decidability of typing and inhabitation depends on the type sys-
tem and lambda calculus evaluation strategy:

Call-by-name A—Calculus Typing (? F ¢ :?) | Inhabitation (I' -7 : A)
Simple Types Decidable Decidable
Unrestricted Undecidable Undecidable
Idempotent Types (0o Resources, restricted) Undecidable Decidable
Idempotent Types (co Resources, unrestricted) Undecidable Decidable
Non-idempotent Types (Finite Resources) Decidable Decidable

Decidability prefers (finite) searches on finite resources.

Inhabitation Algorithm Properties

Let (I', o) be an inhabitation goal. Then the inhabitation algorithm has the following properties:

e Termination: Every call generates a finite set of recursive calls.
e Soundness: If T is generated by the algorithm, then I' - T": .

e Completeness: If ' =T : o, then T can be generated by the algorithm.

Y: gsggg:mme
Compiled By: 6
Bartlomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

5 Quantitative Types for Measuring

Usually type systems provide us a way to express qualitative properties of programs, that is we can
only say whether or not some property (like termination) holds, but we cannot specify quantities
attached to it (in case of termination: we do not know the number of necessary reduction steps). For
this we need to improve our type system with counters that will somehow encode our quantities.

5.1 Benefits of counters

Proper design of a qualitative type system allows us to easily prove certain properties of the
language. For example termination is equivalent to term’s typability in non-idempotent system H
defined above. Below we present a sketch of the proof.

Proof. We define a relational model of programs from our language: [t] := {pT'Ft: A} Then we
prove that equivalent (with respect to reduction relation) programs are mapped to equal sets, i.e.:
if t — u then [t] = [u]. This gives us an equivalence of derivations: >T') t: 4 «= T H) u:
A. From properties of system H follows that C' > C’. Counters are natural numbers, so termination
follows from well-foundedness of "<’ relation (we cannot have infinite decreasing sequences). O

5.2 Split measures

With more complicated structure of counters we can give more detailed specifications of terms.
Gardner’s System H gives only an upper bound on the sum of term’s size and the number of its
reduction steps. We can improve this system with exact measures, that track the exact value of
that sum, but better solution is provided with split measures. With this approach we introduce
a separate counter for each quantity we want to keep track of and we make the tuple consisting of
those counters our new counter.

5.3 Head Normalization

To give an example of the use of our system, we formalize the notion of head normal forms.
Head Normal Forms (HNF): \zy ... \x,.ytq ...ty

Head Evaluation: It is like ordinary evaluation, but we do not evaluate the right sides (the
arguments) of the application.

Head Normalization: is head evaluation of a term to its head normal form.

Y: gsggg:mme
Compiled By: 7
Bartlomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

Example:
I=Xyy, Q:=Ayyy)(\y.yy)
Azx.1x€) is HNF, Q) is not.

Gardner’s system H gives the following formulation of termination:

Theorem 5.1. >y H©) t: A iff t head normalizes in L steps to a HNF of size S and L+ S < G

5.4 System SH: Split Measures

We now introduce system SH implementing split measures.

Grammar of types is following:

(Tight Constants) tt :=nla
(Types) A:z=ttM— A
(Multi-types) M= [Aj]ier
Judgements have the form: z1 : My, ..., x, : M, H(S) ¢ A Here L captures the length of reduction

sequence ending in HNF and S captures the size of that HNF.
We say that a derivation is tight if A and all types in I' are tight constants.
Typing Rules:

(T FEo5) 2 A)ier

MaANY
Ax |_| I, Fier Li2lier 50 ¢ [A;]
z: [AFOY 54 i€l
Diz: MY ¢4 - Dyx: MEE9¢:q IsTight(M) .
[FEHLS) Agt: M — A e D EST) Agt i q o
PFESD oA ARES) 4o M R PHES) ¢on AFES) 41 g N

TUA FEHLSHS) 4 4 e TUA FEALSHS+0) gy "

Example:
’v gsggg:MMING

Compiled By: 8 Y

Bartlomiej Krdlikowski, Joel Nyholm, Xuyang Li

Lambda Calculi through the Lens of Linear Logic Delia Kesner

2:n k00 5. p

FO1) 1.4
z:[[a] = a] FOO z:[a] - a FOD 1 [a] z:[a] FOO) 2 :a
z:[[a] = a] FOD 21 :a FAO I:[a] - a
FOD \g.zT: [[a] — a] — a FLO) 1 : [[a] — &]

F@D (A\z.2I)I:a

Term (Azx.xzI)I evaluates in 2 steps
()\.Q?.iL‘I)I —p 1T =51

to a normal form I of size 1.

5.5 Termination in System SH

Now we can give a more precise formulation of termination in system SH

Theorem 5.2. (Split Measures)

>syl’ HES) ¢ A <t head normalizes in L steps to HNF of size S

6 Conclusion and future works

Quantitative type systems offer a powerful framework for understanding and analyzing various
computational phenomena. They enable a fine-grained characterization of termination behav-
iors—such as head, weak, strong, or infinitary termination—and help tackle classical problems like
size explosion by distinguishing between upper bounds and exact measures. These systems provide
a quantitative perspective on traditional semantic properties like solvability and genericity and
benefit from the expressive strength of relational models. They can render previously undecidable
problems, such as inhabitation, decidable, and offer a structured approach for proving observational
equivalence, delineating complexity classes, and establishing completeness of reduction strategies.

Looking forward, several challenging areas remain to be explored. These include the development
of quantitative type theories for effectful models of computation, useful and strong evaluation
strategies, and techniques such as deep inference and general rewriting. Further refinement is
needed to provide a more comprehensive quantitative account of traditional properties and to assess
the efficiency of various programming strategies and implementations. Finally, a key objective is
to identify decidable fragments of these theories that are both expressive and practical for use in
real-world programming languages.

Y: gsggg:mme
Compiled By: 9
Bartlomiej Krdlikowski, Joel Nyholm, Xuyang Li

	Motivations
	From Simple Types to Quantitative Types
	Simple Types
	Intersection Types
	Intersection constructor

	Quantitative Types for Lambda Calculus
	Gardner's System H
	System H with a Single Counter
	Example: Church Numerals

	Quantitative Types and Inhabitation
	Quantitative Types for Measuring
	Benefits of counters
	Split measures
	Head Normalization
	System SH: Split Measures
	Termination in System SH

	Conclusion and future works

