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1 Introduction

Different computation strategies require different techniques in order to prove the same property.
We would like to do it homogeneously, i.e. we would like to prove each property once for a class
of strategies. Call-by-value (CBV) and call-by-name (CBN) are an example of different strategies
requiring different methods to prove same properties.

1.1 CBN and CBV

CBN and CBV are the two reduction strategies most important for λ-calculus. They were first
studied by Plotkin ([1]), who has shown their equivalence.
Call-by-value first computes its argument, then substitutes it for the variable, what may cause
duplication.
Call-by-value first substitutes (duplicates) function arguments and then it computes them in place
they appear.

Examples:

CBV: (λx.fst(x, x)) 32 ↠ fst(32, 32) ↠ 32 → 9

CBN: (λx.fst(x, x)) 32 ↠ (λx.fst(x, x)) 9 ↠ fst(9, 9) ↠ 9

Call-by-value strategy is better understood than call-by-name, but it is rarely used in actual pro-
gramming languages. In practice, languages either use call-by-value or call-by-name that need more
advanced machinery to be studied. In order to unify those two strategies and be able to reason
about the CBV strategy using CBN’s tools we define Bang calculus, that captures fundamental
properties of both.

2 Subsuming Framework

The foundations of Bang-calculus come from Levy’s call-by-push-value and Girard’s Linear logic.
These two frameworks focuses on two different aspects. Call-by-push-value focus on values versus
computation, whilst linear logic focus on linear resources versus erasable/duplicable resources.
However both subsume call-by-name and call-by-value.

2.1 Bang-Calculus

The first Bang-Calculus [2] was created by Ehrhard and it bridged the gap between call-by-push-
value and linear logic, but it was incomplete, because terms denoting non-terminating programs
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could be blocked. Hence, Ehrhard and Guerrieri [3] created a second Bang-Calculus that is complete
but breaks confluence. The Bang-Calculus we will discuss, the (Distant) Bang-Calculus [4], created
by Bucciarelli et. al. recovers both completeness and confluence.

Syntax Within the terms we have three special ones: value/bang (!t), deriliction (der t) and
explicit substitution (t[x\u])

Terms: t, u ::= x | tu | λx.t | !t | der t | t[x\u]

Operational semantics We have three operational semantics rules, β-reduction, substitution
that only substitutes values (marked with a bang) and deriliction that turns a term/value into a
computation.

Beta: (λx.t)u → t[x\u]
Substitution: t[x\!u] → t[x\u]
Value/Computation: der(!t) → t

2.2 Distant Bang-Calculus

Distant Bang-Calculus is inspired from linear logic, and, as such it avoid blocking situations. In
this framework we use t L (a list of substitutions) that abbreviates t [x1\u1]...[xn\un] (n ≥ 0).
Hence, the operational semantics are also altered.

Beta: (λx.t)L u → t[x\u] L
Substitution: t[x\(!u) L] → t[x\u] L
Value/Computation: der((!t) L) → t L

Note that this calculus is non-deterministic

3 Simple untyped properties

Given that we have tN meaning that NAME maps to and tV meaning BANG maps to BANG then we
have the following general form:
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t verifies property P in NAME iff tN verifies propertyP in BANG

t verifies property P in VALUE iff tV verifies propertyP in BANG

Encoding untyped CBN/CBV These following encodings are Girard’s translations. However,
there are several variation of the translation, each with different properties. We take note of them
all and use different variants when applicable. Also since we can duplicate/erase abstraction, we
add a bang to them. For example, if we have (tu)V then we have an abstraction. In Bang calculus
an abstraction is a computation, hence we need a deriliction (der(tV )uV ).

−N : NAME 7→ BANG −V VALUE 7→ BANG

xN
def
= x xV

def
=!x

(λx.t)N
def
= λx.tN (λx.t)V

def
=!λx.tV

(tu)N
def
= tN !uN (tu)V

def
= der(tV )uV

(t[x\u])N def
= tN [x\!uN ] (t[x\u])V def

= tV [x\uV ]

3.1 Deriving properties

With Bang-calculus we can derive property P for NAME and VALUE from property P for BANG. P
can be different properties such as: confluence, factorization, typability with intersection types,
(qualitative/quantitative) termination, inhabitation, meaningfulness and genericity.

Take P := confluence, where confluence is defines as follows. A reduction relation enjoys confluence
if for every term t, u, v such that u ↞ t ↠ v there is a term s such that u ↠ s ↞. From the Distant
Bang-Calculus paper [4] we know that BANG is confluent and we also know that NAME and VALUE

confluence can be derived from BANG confluence [5]. Another example is to derive factorization,
which is defined as follows. A reduction relation enjoy factorization if every sequence can be
rearranged so that (relevant) external steps are performed before (irrelevant) internal steps (see
Fig below).

We will not derive it personally, but BANG admits factorization and NAME and VALUE factorization
can be derived from BANG factorization [5].
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4 Intersection types

Systems with intersection types allow us to express operational properties of languages. Different
systems correspond to different reduction strategies. Gardner’s system H that we have seen yester-
day is an example. It corresponds to CBN reduction strategy. [6] We will refer to it as system N .
Another system (that we will call V here) modeling the CBV semantics ([7], [8]) will be discussed
in detail in the next lecture. Here we will define system B covering semantics of BANG from [8].

All three models satisfy the following property:

Theorem 4.1. (Qualitative termination) t is typable in N/V/B if and only if it terminates in
NAME/VALUE/BANG

4.1 Types for System B

Type system B differs from the previous system in that we have explicit dereliction (der) and bang
(!).

(Types) A ::= ι | M | M → A

(Multi-Types) M ::= [Ai]i∈I

x : [A] ⊢ x : A

Γ ⊢ t : A
Γ \ x ⊢ λx.t : Γ(x) → A

Γ ⊢ t : M → A ∆ ⊢ u : M
Γ ⊔∆ ⊢ tu : A

Γ ⊢ t : A ∆ ⊢ u : Γ(x)

(Γ \ x) ⊔∆ ⊢ t[x\u] : A
(Γi ⊢ t : Ai)i∈I⊔
i∈I Γi ⊢!t : [Ai]i∈I

Γ ⊢ t : [A]

Γ ⊢ der t : A

4.2 Termination

We can prove the following relation between the terms of NAME and the terms BANG and between
the terms of VALUE and the terms BANG.
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Theorem 4.2. (Preservation [8])

• ▷NΓ ⊢ t : A ⇐⇒ ▷BΓ ⊢ tN : A

• ▷VΓ ⊢ t : A ⇐⇒ ▷BΓ ⊢ tV : A

Corollary 4.3. (Termination)

• t is NAME-terminating if and only if tN is BANG-terminating

• t is VALUE-terminating if and only if tV is BANG-terminating

We can derive qualitative termination information (i.e. number of reduction steps and the size of
the normal form) of NAME and VALUE from BANG. To this end, we decorate each type system with
counters like we did in case of system H ([9]). We achieve systems EN , EV and EB respectively
with judgements of the form Γ ⊢(L,S) t : σ, where L denotes the length of term’s normalization
procedure and S denotes the size of the result. For each system the following property holds.

Theorem 4.4. (Quantitative termination) Π ▷EN/EV/EB Γ ⊢(L,S) t : A (i.e. t is (tightly) typable in
EN/EV/EB) if and only if t terminates in NAME/VALUE/BANG in L steps and its normal form is of
size S

We can also prove a refined version of the preservation theorem that relates the lengths of reduction
paths and sizes of normal forms between all three calculi.

Theorem 4.5. (Preservation [10])

• ▷ENΓ ⊢(L,S) t : A ⇐⇒ ▷BΓ ⊢(L,S) tN : A

• ▷EVΓ ⊢(L,S) t : A ⇐⇒ ▷BΓ ⊢(L′,S) tV : A

where each of L and L′ is calculable from the derivation of the other

5 Inhabitation Property for Bang-Calculus

Definition of Inhabitation Problem (IP)

We define the inhabitation problem P for the Bang-calculus as:

Given a context Γ and a type A, does there exist a term t such that Γ ⊢ t : A?
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This is denoted formally as:
P := inhabitation

The inhabitation problem connects the semantics of types with program synthesis: a solution to
the problem yields a term that realizes the logical specification encoded by the type.

Key Properties of the BANG Inhabitation Algorithm

An algorithm exists to solve the IP for BANG, which satisfies the following critical properties:

• Termination: The algorithm always halts after a finite number of steps.

• Soundness: Every term it returns is indeed a valid inhabitant of the given type.

• Completeness: If a type is inhabited, the algorithm will find (at least one) such inhabitant.

Implementation: This algorithm has been implemented in OCaml by V. Arrial.

Preservation Theorem (Arrial–Guerrieri–Kesner, 2023, [11],[12])

A key meta-theoretical result is that:

The decidability of the IP for BANG implies the decidability of the IP for both
call-by-name and call-by-value systems.

Formally:
Decidability of BANG ⇒ Decidability of NAME and VALUE

This reflects the idea that Bang-calculus subsumes both call-by-name and call-by-value as specific
fragments. Thus, solving the inhabitation problem BANG provides a general method that also covers
more familiar evaluation strategies.

Typing and Inhabitation: A Dual Perspective

The following table summarizes the relationship between typing and inhabitation problems in var-
ious type systems:
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System Typing (Γ? ⊢ t : A) Inhabitation (Γ ⊢? : A?)

Simple Types Decidable Decidable

Idempotent Intersection Types Undecidable Undecidable

Non-Idempotent Types Undecidable NAME: Decidable, VALUE: Decidable

6 The Meaningfulness Property

Intuition

In a resource-sensitive setting like BANG, not all terms are well-behaved or “meaningful.” Some
terms are intuitively clashes – combinations that reduce to ill-formed or unsound configurations.

This motivates a semantic distinction:

• Meaningful terms are those which, when placed in an appropriate context, reduce to some
observable value.

• Meaningless terms are those that fail to yield such observations, often due to incompatible
structure or irreducibility.

Example of a clash:
(!t)u and t(λx.u)

These forms are considered meaningless as they missalign duplication and function application
in the linear calculus.

Formal Definition of Meaningfulness in Bang

We define meaningfulness using two key notions:

• Testing contexts T : evaluation contexts that feed a term with arguments. Defined induc-
tively:

T ::= ⟨·⟩ | T s | (λx.T ) s

• Observable terms: typically values, such as !u, that indicate computational content.

Definition 6.1. A term t is meaningful in BANG if there exists a testing context T and an
observable term !u such that:

T ⟨t⟩ −→∗ !u
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Examples:
λx.x is meaningful; Ω, xΩ, x x are meaningless.

Logical Characterization

Meaningfulness is sensitive to contextual substitution roles. For example, in xx:

• The rightmost x must act as a value (argument),

• The leftmost x must act as a function,

but a single variable x cannot simultaneously fulfill both roles in a linear setting — rendering the
term meaningless.

This reflects incompatibility similar to that found in calculi with conflicting data interpretations
(Bucciarelli–Kesner–Ronchi Della Rocca ’15 [8]).

Meaningfulness in NAME and VALUE

Different calculi instantiate meaningfulness differently:

• NAME-meaningfulness = solvability (Wadsworth ’71, [13]):

A term t is solvable if ∃T such that T ⟨t⟩ →∗ I

• VALUE-meaningfulness = potential valuability (Paolini–Ronchi Della Rocca ’99):

A term t is potentially valuable if ∃T such that T ⟨t⟩ →∗ v for some value v.

We write P := meaningfulness when discussing these properties generically.

Preservation Theorem

Theorem 6.1 (Arrial–Guerrieri–Kesner ’24 [11][12]).

• t is NAME-meaningful ⇐⇒ tN is BANG-meaningful
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• t is VALUE-meaningful ⇐⇒ tV is BANG-meaningful

This establishes that the Bang-calculus captures the meaningfulness properties of both evaluation
strategies faithfully, via appropriate translations tN and tV into the Bang-calculus.

7 Conclusion and Further Work

The Bang-calculus presents itself as a robust and unifying framework, capable of subsuming both
untyped and typed paradigms. In the untyped setting, it accounts for key meta-theoretical prop-
erties such as confluence, factorization, meaningfulness, and genericity. In the typed setting, it
enables precise analysis of program behavior, including exact upper bounds on term length and
size, as well as decidable algorithms for the inhabitation problem. These foundational strengths
open the way to further inquiries, such as extending the framework to capture approximation the-
ories relevant to both NAME and VALUE calculi, incorporating more expressive features like global
state or non-determinism, or exploring alternative frameworks—such as those based on NEED—that
might offer different yet compatible perspectives on subsumption and operational reasoning.

Compiled By:
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