LAMBDA CALCULI THROUGH THE LENS OF LINEAR LOGIC

Delia KESNER

Email:kesner@irif.fr
URL:www.irif.fr/~kesner

Université Paris Cité and CNRS

Why Lambda Calculus?

A foundational model of computation

- Origin of functional programming languages (e.g. Haskell, OCaml, Scala)
- Central to the theory of programming languages and proof theory

Minimal syntax, maximal expressiveness

- lacksquare Captures computation via substitution and eta-reduction
- Basis for type systems, evaluation strategies, and semantics

Still a fertile ground for research

- New hints about call-by-name, call-by-value and call-by-need operational semantics.
- Interaction with category theory, game semantics, rewriting systems, etc.

LINEAR LOGIC Jean-Yves Girard

Resource aware logic

No Weakening (No Erasure)

No Contraction (No Duplication)

Recovering Erasure and Duplication

Two Exponential Modalities:

Why not Of course/Bang ? !

Intuition: formulas must be marked with exponentials to be erased/weakened or duplicated/contracted.

Multiplicative Exponential Linear Logic (MELL)

Why Linear Logic?

- Refines intuitionistic and classical logic
 - Controls duplication and erasure
 - Naturally captures resource-sensitive computation
- Unlocks new insights into computation
 - Proof-nets: a graphical syntax
 - Call-by-name vs call-by-value as logical phenomena
 - Implicit complexity and cost models
- Provides a fruitful perspective for revisiting old ideas
 - Offers a fine-grained look at evaluation and typing
 - Inspires new calculi and type systems

Goals of the Course

- Explore lambda calculi variants inspired by linear logic
 - Syntax, semantics, and operational properties
 - Fine-grained (implementation) calculi
 - Subsuming frameworks (capturing different models of computation)
- Understand the structure of computation through linear-logic types
 - Intersection/Quantitative types
- Provide resource aware tools for modern theoretical research
 - Observational equivalence
 - Inhabitation
 - Genericity

Course Outline

- Day 1: Linear Logic Proof-Nets
- Day 2: A Lambda-Calculus Inspired from Linear Logic Proof-Nets
- Day 3: Intersection/Quantitative Types
- Day 4: A Subsuming Framework Inspired from Linear Logic
- Day 5: Observational Equivalence By Means of Intersection Types