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MLL Formulas

Atomic Formulas: p and p.

Formulas: A ::=p | p |A®B|A®B

(Involutory) Negation:
L — L

P =P 1

(A®B) = A*®B* (A®B)*

Remark (AY)* =4

At9B*
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MLL (Two-Sided) Sequent Presentation

I'rALA AT N

ara ™ rreaar
IA,B,T"+ A I'tAA, B, A
- . . (perm L) —_— (perm R)
I,B,A,T"+ A I'tA B AN
IMArA T ,BrA I'tA BA
(par L) —— (par R)
LT, A®B+ AN '+ A®B,A
IABrA T'tALA T'vBN
(ter\sor L) (tensor R)

INA®BFA ILT' FAQ B, A A
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MLL (Unilateral) Sequent Presentation

FA,T FAY A +T,A,B,A
—(@x) ————(cut) ————— (perm)
FAY A FT,A FT,B A A
+A,BT AT B, A
(par) ——  (tensor)

FASB,T FA®B,T',A
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Towards Proof-Nets

How many proofs ending in + (A179A,), ..., (Az_1"0A2,)

if we start from a derivation of - Ay,...,A,,?
If n =2, then
FALA Az Ay FALA A3 Ay
— (par) — (par)
FAPRA, Az, Ay FAL A AYRA,
(par) (par)
+ A1>8A2,A3>?A4 - Al’?AZ,AS?A4

m n!: any possible sequent derivation captures a particular constructor history (there
are different possible sequentializations).

e @/>
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Is there any better representation of proof derivations
making abstraction of such bureaucracy?



www.irif.fr/~kesner

MLL Proof-Nets

An MLL Proof-Net (PN) with conclusions Ay,..., A, is a graph defined by induction as
follows:

m For every MLL formula A, we have a PN with conclusions A+, A having the form:

At A

m Given a PN with conclusions T', A, B on the left, we can construct the PN with
conclusions I', A’¢ B on the right.
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MLL Proof-Nets

m Given a PN with conclusions I', A and a PN with conclusions A, B on the left, we can
construct the PN with conclusions I', A ® B, A on the right.



www.irif.fr/~kesner

MLL Proof-Nets

m Given a PN with conclusions I', A and a PN with conclusions A, A* on the left, we
can construct the PN with conclusions I', A on the right.

— > T 17177

I

r A A+ A
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Coming Back to the Example

Which is PN associated to the following proofs?

FALA Az Ay FALA A3 Ay
—— (par) —— (par)
FAURA Az, Ay AL A AYRA,

(par) (par)
FAIRAL, AYRA, FAIRA, ARA,
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Digression

] . No bureaucracy (the order of application of independent rules is abstracted
away).

] G No trace of the sequentiaIization/constructor history.

NI o
Ma\ @? & *

TR
oS

Closing the gap: how do we check that a given graph-like structure
truly corresponds to a valid proof-net?
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Graph-Like Structures: Pre Proof-Nets

Pre Proof-Nets (Pre-PN) are generated by the following links:

(Axiom) (Cut) (Par)

A B

A A
A+ A L@J AwB

and satisfy the following conditions:
m Every formula is the conclusion of exactly one link.
m Every formula is the premise of at most one link.

(Tensor)
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A Pre Proof-Net which is not a Proof-Net

™
N
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A Pre Proof-Net which is a Proof-Net

,/07#0
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Goal

We need some correctness criteria on
graph-like structures to check if they truly

correspond to valid proof-nets
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Some References

m Long-trip (Girard 87)

m Contractibility (Danos 90)

m Acyclic-Connected (Danos 90)

m Graph Parsing (Guerrini, Martini, Masini 97)
|
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Long-Trip Criteria - Definitions

m Each link is a router:
m The ports of the link are the associated formulas (premisses or conclusions)
m The routing rules of the link indicate the exit port depending on the enter port
Moreover,
m The axiom and cut links have only one possible configuration
m The tensor and par links have two possible configurations (L) and (R)
m The leaves connect the enter port with the exit port

Configurations
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How to Read the Rules?

Q7

e A path entering at B, exits at A.

A path entering at A, exits at A*.
A path entering at A+, exits at A.

e A path entering at A ® B, exits at B.
E e Apath entering at A, exits at A ® B.
(#)
A3D \ e A path entering at B, exits at B.
o Apath entering at A, exits at A’ B.

A path entering at A’9B, exits at A.
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Long-Trip Criteria

Theorem

A Pre-PN is a PN iff for every possible configuration of the links there is a unique long
trip (i.e. a cycle visiting each node exactly once in each direction).

Exponential Complexity
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A Pre-PN which is not a PN
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A Pre PN which is a PN
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Acyclic Connected Criteria (ACC) - Definitions

m A Pre-PN is abstracted by a paired graph S equipped with
m Aset V of vertices
m A set E of edges
B A set C(S) of pairwise disjoint pairs of co-incident (i.e.one node in common) edges.
They are marked with an arc in red.

For every Pre-PN P we define a paired graph P~ by using the following constructions:
p AR

T ensoR

AXioO M <A
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Examples

Paired Graph P1 Paired Graph P2
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Removing Edges

Let S be a paired graph. Then R(S) is the set of graphs obtained from S by removing

Definition
exactly one edge for each pair in C(S). J

Coming back to the paired graph P2:

P
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Acyclic Connected Criteria (ACC)

Remark: Every Pre-PN P can be seen (i.e. abstracted) as a paired graph P~.

Theorem
A Pre-PN P is a PN iff every graph in R(P~) is connected and acyclic (i.e. a tree).

Still Exponential: 27, where p is the number of par links in the graph
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Contractibility - Definitions

We consider the following rewriting system with two rules:

Given a paired graph S':
m The first rule can only be applied to a pairwise disjoint pair of edges of C(S)
connecting the same two nodes.

m The second rule can only be applied to an edge (not in C(S)) connecting two
different nodes.
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Examples

<

reduces to ®
reducesto  ©

Theorem
A Pre-PN P is a PN iff P~ is contractible (i.e. reduces to a single node).

Quadratic Time
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MELL Formulas

Atomic Formulas: p and p.

Formulas: A IS=P|£|A’?B |[A®B)|?2A| A

(Involutory) Negation:

p* =P r =P
(A9B)Y = A'®B* (A®B) = AlweB-
(2A)* = 1AL (1A)* = At

Remark (AYH)t =A
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MELL (Two-Sided) Sequent Presentation

'rA,A AT RN IA,B, T+ A I'rAA BN
(ax) (cut) ——————— (perml) ——————— (perm R)
ArA LT FAN IB,AT +A 't A BAN
IAFA T, Br A 'rA,BA
(par L) (par R)
[T, A9B+ AN ' A®B,A
I'A,B,F A 'rA,A T'"r BN
—————— (tensor L) (tensor R)
[LA®B*rA I -A®B,AN
'rA [IAJJARA [LArA I,AR?2A
— (lwea) —————— (lcont) ————— (1der) —— (?L
IIAFA [JAFA IIAFA I, 2A F7A
'rA ['F?2A,2A,A 'rAA I'+A,2A

(? weak) _— (7 cont) _— (‘7 der)

S — (R
[ H24,A [ H24,A T HI4, A T HA,?A( )
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MELL (Unilateral) Sequent Presentation

AT FATA FI,A, B, A

— @) ———(cut) ————— (perm)
FATA FT,A +T,B,A A

A, BT FAT +FBA
——(par) ———— (tensor)
FA®B,T FA®B,T,A

FT F?A,?A,T FAT FA,M
(weak) —— (cont) —— (der)
F?A,T F?A,T F?A,T HIA, T

(bang)
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Example

— ()
FA A" (o)
— (ax) 1 der
FAA kA, 2A
o \der - (ax ————— (bang)
FA, 24" (der) FA AL (=) FIA, 24
———— (par) (tensor)
FARIA" FAT®IA A, 24" ()
cut
FA, A"
(weak)
FA, 24T, 2A*
(cont)
FA, A"
(weak)

FA, 244, 2CH
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e Multiplicative Linear Logic (MLL)

© MLL Proof-Nets
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0 Correctness Criteria

e Multiplicative Exponential Linear Logic (MELL)

@ MELL Proof-Nets
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MELL Pre-PN

(Axiom) (Cut) (Weakening) (Contraction)
7A A

et @

At A L@J 24

(Par) (Tensor) (Dereliction)

A B A B A

v N 6

A%B A®B A
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Intuition Behind MELL Proof-Nets

Erasable/Duplicable formulas are captured inside BOXES.
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MELL Proof-Nets

A MELL Proof-Net (PN) with conclusions Aj,..., A, is defined by induction as follows:
m Every MLL PN is a MELL PN.

m Given a PN with conclusions I" on the left, we can construct the PN with conclusions
I', ?A on the right.

- P

r 7A r

m Given a PN with conclusions T, ?4, ?A on the left, we can construct the PN with
conclusions T, ?A on the right.

C )

oo F'@
r
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MELL Proof-Nets

m Given a PN with conclusions I', A on the left, we can construct the PN with
conclusions I', ?A on the right.

A

A
@
r
7A

m Given a PN with conclusions ?T', A, we can construct the following PN with
conclusions T, !A

) NONN
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Example

r*\,_&x__.\
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About the Operational Semantics

m Structural transformations:
m Equivalences
m Additional Rewriting Rules
m Cut Elimination transformations:
m Multiplicative Rewriting Rules:
Reduction rules not involving BOXES
m Exponential Rewriting Rules:
Reduction rules involving BOXES
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Equivalence Relation for MELL Proof-Nets

FT, 124", 247, 2A° FT, 241,247, 24
Toat o e SToal oA
(cont) (cont)
FT, 24123 FT, 24
247 74 24 A
7A =) 7A
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Equivalence Relation for MELL Proof-Nets

v, 28, 28 [ vor, 2B, 28 A
e 3 1 | FLERLES
T, 7B, A FOC, 7B, 7BA

vT, 28 , [

vor, 28 , A
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Additional Rewriting Rules for MELL Proof-Nets

LT, 24
TToA A e FT, 24
————— (cont)

kT, 24

Y‘D/ P y-c
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Additional Rewriting Rules for MELL Proof-Nets

FIT, R,
raop oA )
(bang) (weak)
FIT, , ?B FT, 1?2
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Multiplicative Cut Elimination Rules for MELL Proof-Nets

(ax)
FT, A AL A FILA

FTLA (eu)

e -
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Multiplicative Cut Elimination Rules for MELL Proof-Nets

+T,A,B FAAY FILB* +T,A, B FII, B*
(par) (tensor) (cut)
rT, A9B FA At ®Bt |11 1,00, A FA, At
(cut) (cut)
T, AT FT,A T
C D C O C D C DI > C D)
r A B A At B+ T A B B+ II A At
B
A®B A+ ® B+

F@—j cut,
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Exponential Cut Elimination Rules for MELL Proof-Nets

(weak)

(cut) FAT

o
>Cw,b) 3


www.irif.fr/~kesner

Exponential Cut Elimination Rules for MELL Proof-Nets

FAA T, A
(der) ——— (bang) FA, A T, At
FA, 24 RO, 1A* (cut)
(cut) A
FAM
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Exponential Cut Elimination Rules for MELL Proof-Nets

R, AL
(bang)
F A4, 24 R, AL FA2A, 24 Rr, 1AL R, AL
(cont) (bang) (cut) (bang)
FA, 24 T, 1AL FA,T, 24 T, 1AL
(cut)
FAT F AT
(cont)
FAT
-
24
—————————————— ) A
C | D |
! I
1 [ !
24 A LAt |
(b ,,,,,,,,
A 24 1A+ o

el (e ™
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Exponential Cut Elimination Rules for MELL Proof-Nets

F2A, A
T, BE, 24 FIA, A (bang)
(bang) (bang) FT, B, 24 F2A, 1At
R0, 1B, 24 F2A, 1AL (cut)
(cut) T, 24, B+
T, ?A, 1B+ (bang)
R, 2A, 1B

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

e —_— BT
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The Reduction Relation for MELL Proof-Nets

Let consider the following relations:

R = {Ua),C(?,®),Cw,b),Cd,b),C(c,b),C(b, b), w-b, w-c}
& {A(c), I0(c)}

m The reduction relation —« is the closure by all PN contexts of the rules in R.

m The congruence =g is the reflexive, symmetric, transitive, closed by PN contexts
relation on PN generated by the equations &.

Said differently, the reduction rules in R and congruences rules in & are applied locally
inside some (common) context.

Finally, we shall write —¢,¢ for the reduction relation on MELL proof-nets generated by
the reduction relation —% modulo the congruence =, i.e.

p —wie P iff Apy, py such that p ~g pi—x p2 =g p’
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MELL Proof-Nets Properties

Definition
A reduction relation S is said to be confluent if and only if for every #, u, v such that
t -5 uandr -y vthereis ¢ suchthatu —% ¢ andv -} 7.

Theorem (Confluence)
The reduction —g¢ is confluent on MELL Proof-Nets.
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MELL Proof-Nets Properties

Definition
m A reduction relation S is said to be terminating if and only if for every ¢ there is no
infinite — s -sequence starting at 7 (i.e. every —s -reduction sequence starting at
any term is terminating).

m A reduction relation S is said to be strongly normalizing if and only if every typed
object ¢ is terminating.

Theorem (Strong Normalization)

The reduction —g¢ is terminating on MELL Proof-Nets (i.e. —g,s is strongly
normalizing).

Proof.

Based on strong normalization of - by Girard. O
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ATTENTION
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