LAMBDA CALCULI THROUGH THE LENS OF LINEAR LOGIC

Lesson 2: A Lambda-Calculus Inspired from Linear Logic

Delia KESNER

Email:kesner@irif.fr
URL:www.irif.fr/~kesner

Université Paris Cité and CNRS

What this talk is about?

0 1: 15 "	T 0 1 1	
Graphical Formalism	Term Calculus	
Girard's intuitionistic MELL proof-nets	Functional language called pn	
BOX H H H SAL SAL SCL	Lambda Calculus with Explicit Substitutions (ES) $(\lambda y. \lambda x. yx)[x \backslash w]u$	
Only BOXES can be erased/duplicated	Only ARGUMENTS can be erased/duplicated	
Linear Context (outside BOX)	Linear Context (outside ARGUMENT)	
Non-Linear Context (inside BOX)	Non-Linear Context (inside ARGUMENT)	
Reduction free of bureaucracy Local Reduction	Reduction free of commutative rules Reduction at a distance: crosses contexts	
Convenient for semantical studies and abstract reasoning	Convenient for language implementation and inductive reasoning	

Agenda for Today

- Lambda-Calculus A Brief Reminder
- A Lambda Calculus with Explicit Substitutions
- From Typed Terms to MELL Static Translation
- From Typed Terms to MELL Dynamic Translation
- 5 Some Properties of the Calculus
- Conclusion

Agenda

- Lambda-Calculus A Brief Reminder
- A Lambda Calculus with Explicit Substitutions
- From Typed Terms to MELL Static Translation
- From Typed Terms to MELL Dynamic Translation
- Some Properties of the Calculus
- 6 Conclusion

The λ -Calculus - Syntax

Terms: $t, u := x \mid \lambda x.t \mid tu$ **Contexts**: $C := \Diamond \mid \lambda x.C \mid Ct \mid tC$

- We use $\mathbf{fv}(t)$ (resp. $\mathbf{bv}(t)$) to denote the set of free (resp. bound) variables of t.
- We use a **meta-level** operation $t\{\{x\setminus u\}\}$ which simultaneously replaces all the **free** occurrences of x in t by u.
- We work modulo **alpha-conversion** (renaming of bound variables) generated by the equation: $\lambda x.t \equiv \lambda y.t\{x \setminus y\}$ where y is fresh. For example $\lambda x.xz = \lambda y.yz$.
- $C\langle t \rangle$ denotes the context C where the hole \diamondsuit has been replaced by t. Possible capture of free variables, e.g. $(\lambda x.\diamondsuit)\langle x \rangle = \lambda x.x$.
- C $\langle t \rangle$ denotes the context C where the hole \diamond has been replaced by t without capturing any free variables. e.g. $(\lambda x. \diamond) \langle y \rangle = \lambda x. y$ and $(\lambda x. \diamond) \langle x \rangle$ not defined.

The λ -Calculus - Operational Semantics

Only one rewriting rule:

$$(\lambda x.t) \ u \mapsto_{\beta} t\{x \setminus u\}$$

■ The reduction relation \rightarrow_{β} is generated by the relation \mapsto_{β} closed by all contexts C: if $t \mapsto_{\beta} u$, then $C\langle t \rangle \rightarrow_{\beta} C\langle u \rangle$.

Alternative Definition:

$$\frac{t \to_{\beta} u}{(\lambda x.t) \ u \to_{\beta} t \{\!\!\{x \setminus u\}\!\!\}} \quad \frac{t \to_{\beta} u}{\lambda x.t \to_{\beta} \lambda x.u} \quad \frac{t \to_{\beta} u}{tv \to_{\beta} uv} \quad \frac{t \to_{\beta} u}{vt \to_{\beta} vu}$$

Both definitions are taken modulo alpha-conversion.

Lambda-Calculus is Turing complete.

Examples

Let Id :=
$$\lambda z.z$$
. Then,

Erasing case: $(\lambda y.x)z \rightarrow_{\beta} x$

Duplicating case: $(\lambda y.yy)z \rightarrow_{\beta} zz$

Non-terminating case: $(\lambda y.yy)(\lambda y.yy) \rightarrow_{\beta} (\lambda y.yy)(\lambda y.yy) \rightarrow_{\beta} \dots$

Contextual case: $\lambda z.(\lambda x.y)(\text{Id Id}) \rightarrow_{\beta} \lambda z.(\lambda x.y)\text{Id} \rightarrow_{\beta} \lambda z.y$

The λ -Calculus - Simple Types

Types: $A ::= \iota \mid A \rightarrow B$

Typing Rules (Natural Deduction Style):

$$\frac{1}{x_1:A_1,\ldots,x_n:A_n\vdash x_i:A_i} \text{ (axiom)}$$

$$\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x.t: A \to B} (\to \text{ intro}) \quad \frac{\Gamma \vdash t: A \to B \quad \Gamma \vdash u: A}{\Gamma \vdash tu: B} (\to \text{ elim})$$

- Rule (axiom) uses weakening.
- Rule (→ elim) is additive (implicit contraction).
- We denote by $\Gamma \vdash_{\lambda} t : A$ the corresponding derivability relation.
- A term t is (simply) typable if there exists a derivation $\Gamma \vdash_{\lambda} t : A$.

Some Salient Remarks about Simply Typed Lambda-Calculus

- Typical Curry-Howard correspondence (λ-calculus corresponds to minimal intuitionistic logic).
- Provides only **monomorphic** information.
- Lack expressivity power but typability is decidable.
- Typability IMPLIES Strong Normalization, but the converse does not hold.

E.g. the term $\lambda x.xx$ is not typable

The λ -Calculus - Some Typical Meta-Properties

Theorem (Confluence)

If $t \to_{\beta}^* u$ and $t \to_{\beta}^* v$, then there is t' such that $u \to_{\beta}^* t'$ and $v \to_{\beta}^* t'$.

Theorem (Subject Reduction for Simple Types)

If $\Gamma \vdash_{\lambda} t : A$ and $t \rightarrow_{\beta} t'$, then $\Gamma \vdash_{\lambda} t' : A$.

Theorem (Strong Normalization)

If $\Gamma \vdash_{\lambda} t : A$, then $t \in SN(\beta)$, i.e. there is no infinite β -reduction sequence starting at t (every β -reduction sequence starting at t terminates).

To Go Further, Recommended Readings

Our Goal Today

λ -calculus \Rightarrow intermediate language \Rightarrow MELL Proof-Nets

- MELL is an extension of Linear Logic being able to capture intuitionistic and classical logic.
- In MELL, weakening and contraction are handled in an explicit way by means of the modalities? and!.

The intermediate language:

- Lambda-terms with explicit substitutions + equivalence + reduction rules
- Explicit management of resources (erasure and duplication)
- Different alternatives: Λ-calculus, Linear Substitution Calculus, λex-calculus, pn-calculus, λ1xr-calculus, ...

Here, we focus on the pn-calculus.

Agenda

- Lambda-Calculus A Brief Reminder
- A Lambda Calculus with Explicit Substitutions
- From Typed Terms to MELL Static Translation
- From Typed Terms to MELL Dynamic Translation
- Some Properties of the Calculus
- Conclusion

The pn-Calculus: Basic Syntax

```
Terms t, u, v ::= x \mid \lambda x.t \mid tu \mid t[x \setminus u]
Term Contexts C ::= \diamondsuit \mid \lambda x.C \mid Ct \mid tC \mid C[x \setminus t] \mid t[x \setminus C]
```

- [__] is called an Explicit Substitution (ES)
- Free and bound variables (written $\mathbf{fv}(_{-})$ and $\mathbf{bv}(_{-})$ resp.).
- Alpha-conversion:

$$\lambda x.t \equiv \lambda y.t\{\{x \setminus y\}\} \quad y \text{ fresh}$$
 $t[x \setminus u] \equiv t\{\{x \setminus y\}\}[y \setminus u] \quad y \text{ fresh}$

```
Example (x y)[x \mid \lambda z.zw] = (x' y)[x' \mid \lambda z'.z' w].
```

- Pure terms: terms without explicit substitutions.
- Notations: $C\langle t \rangle$ (possible capture of free variables) and $C\langle t \rangle$ (capture-free).

The Key Notions of Contexts

Contexts make it possible to reason at a distance.

Linear Contexts:

$$\mathbf{H} ::= \Diamond \mid \lambda x.\mathbf{H} \mid \mathbf{H}t \mid \mathbf{H}[x \setminus t]$$

(Outside Arguments)

Non-Linear Contexts: A ::= $t \diamondsuit \mid t[y \setminus \diamondsuit]$

$$\mathbf{A} ::= t \diamondsuit \mid t[y \backslash \diamondsuit]$$

(Arguments)

- Substitution Contexts (Special Linear Contexts): $L = \Diamond | L[x \setminus t]$
- Examples:
 - $\blacksquare \quad \mathbf{H}_1 = \lambda y.(\Diamond y)z$
 - \blacksquare L₁ = \Diamond [$x_1 \backslash x_2$][$x_2 \backslash z$]
 - $\mathbf{A}_1 = y \diamondsuit$.

Decomposing Terms Using Linear/Non-Linear Contexts

Property

Given $x \in \mathbf{fv}(u)$, then u can be written in one of the following forms:

- \blacksquare H $\langle x \rangle$, with $x \notin \mathbf{fv}(\mathsf{H})$,
- \blacksquare H \langle A $\langle t \rangle \rangle$, with $x \notin \mathbf{fv}(H)$, $x \notin \mathbf{fv}(A)$, $x \in \mathbf{fv}(t)$,

Example:

- $u = \lambda y.xyz$ can be written as $H \langle x \rangle$, with $H = \lambda y. \diamondsuit yz$,
- $u = ((y(\underline{x}\underline{y}))z)$ can be written as $\mathbb{H} \langle \mathbf{A} \langle t \rangle \rangle$, with $\mathbb{H} = \Diamond z$, $\mathbf{A} = y \Diamond$ and t = xy
- $\mathbf{u} = (((\underline{x}\underline{y})\underline{x})z)$ can be written as $\mathbf{H} \langle \mathbf{A} \langle t \rangle \rangle$, with $\mathbf{H} = \Diamond z$, $\mathbf{A} = (xy)\Diamond$ and t = x.

The pn-Calculus: Intuitions

- There are only five basic operational rules constituting the pn-reduction relation.
- They operate at a distance: they bypass linear and non-linear contexts.
- Only arguments of terms can be erased/duplicated.
- Intuition behind the five basic operational rules:
 - The β -reduction rules is **decomposed/refined** into different atomic actions
 - One possible action is to fire a redex , by delaying the computation of the created substitution.
 - Another possible action is to erase an argument.
 - Another possible action is to linearly substitute an occurrence of some variable by a term.
 - Another possible action is to jump into an argument.
 - Another possible action is to duplicate some argument

The pn-Calculus: Operational Semantics

Fire a Redex

Rule: L $\langle \lambda x.t \rangle u \mapsto_{dB}$ L $\langle t[x \backslash u] \rangle$

Erase

Rule: $t[x \setminus u] \mapsto_{gc} t \quad x \notin \mathbf{fv}(t)$

Linearly Substitute

Rule: $\mathbb{H} \langle x \rangle [x \backslash u] \mapsto_{1subs} \mathbb{H} \langle u \rangle \quad x \notin \mathbf{fv}(\mathbb{H})$

Jump into an Argument

Rule: $\mathbb{H} \langle \mathbf{A} \langle t \rangle \rangle [x \backslash u] \mapsto_{\operatorname{arg}} \mathbb{H} \langle \mathbf{A} \langle t [x \backslash u] \rangle \rangle \quad x \in \mathbf{fv}(t), x \notin \mathbf{fv}(\mathbb{H}), \mathbf{fv}(\mathbb{A})$

Duplicate

Rule: H $\langle A \langle t \rangle \rangle [x \backslash u] \mapsto_{\text{dup}}$ H $\langle A_{[x \backslash u]} \langle t \rangle [x \backslash u] \rangle$ $x \notin fv(H), x \in fv(t), fv(A)$

Example

$$((\lambda z.\lambda y.\lambda x.yxx)wu)v \longrightarrow_{dB}$$

$$((\lambda y.\lambda x.yxx)[z \backslash w]u)v \longrightarrow_{gc}$$

$$((\lambda y.\lambda x.yxx)u)v \longrightarrow_{dB}$$

$$((\lambda x.yxx)[y \backslash u]v \longrightarrow_{dB}$$

$$((yx)x)[x \backslash v][y \backslash u] \longrightarrow_{1subs}$$

$$((ux)[x \backslash v]x \backslash v] \longrightarrow_{dup}$$

$$((ux)[x \backslash v]x[x \backslash v] \longrightarrow_{arg}$$

$$((ux)[x \backslash v]x[x \backslash v] \longrightarrow_{arg}$$

$$((ux)[x \backslash v]v) \longrightarrow_{arg}$$

$$((ux)[x \backslash v]v) \longrightarrow_{arg}$$

$$(ux)[x \backslash v]v) \longrightarrow_{arg}$$

$$(ux)[x \backslash v]v) \longrightarrow_{arg}$$

$$(ux)[x \backslash v]v) \longrightarrow_{arg}$$

$$(ux)[x \backslash v]v) \longrightarrow_{arg}$$

A New Definition of the Substitution Operation

Defining the substitution operation $t\{x \setminus u\}$:

- \blacksquare By induction on the **structure** of t.
- \blacksquare By induction on the # of free occurrences of x in t.
- Our notion of substitution is a MIX of the two:

Structure of <i>t</i> :	Rules {	$ ightarrow_{arg}$: Jump	into an Argument
# of free occurrences of x in t :	Rules {	$ ightarrow_{ ext{1subs}}$:	Erase (0 ocurrences) Linearly Substitute (1 ocurrence) Duplicate (more than 1 ocurrence)

Some Properties

Lemma (Stability of Free Variables)

- If $t \rightarrow_{dB,var,arg,dup} u$, then $\mathbf{fv}(t) = \mathbf{fv}(u)$.
- If $t \rightarrow_{gc} u$, then $\mathbf{fv}(t) \supseteq \mathbf{fv}(u)$.

Remark In λ -calculus no special rule for erasing.

The pn-calculus and MELL Proof-Nets

Has anyone noticed any similarity between the operational semantics of pn and the operational semantics of MELL proof nets?

Agenda

- Lambda-Calculus A Brief Reminder
- A Lambda Calculus with Explicit Substitutions
- 3 From Typed Terms to MELL Static Translation
- From Typed Terms to MELL Dynamic Translation
- Some Properties of the Calculus
- Conclusion

Relation Between the pn-Calculus and MELL Proof-Nets

Static Translation	Dynamic Translation
Typed pn-Terms	Reduction Steps on pn-Terms
to	to
Linear Logic Proof-Nets	Reduction Steps on Linear Logic Proof-Nets

The Static Translation - Some Intuitions

- Linear contexts of terms (outside arguments) are translated to linear contexts of proof-nets (outside BOXES).
- Non-linear contexts of terms (arguments) are translated to non-linear contexts of proof-nets (BOXES).
- Arguments of applications and substitutions (that can be erased/duplicated) are translated to BOXES (that can be erased/duplicated).
- Linear variables are translated to **D**erelicted axioms (variable *y*).
- Void variables are translated to **W**eakening (variable *z*).
- Duplicated variables are translated to **C**ontraction (variable w).

Example:

$$y[y \backslash w][z \backslash w]$$

Simple Types for Explicit Substitutions - Addivite System

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x.t : A \to B} (\to \text{ intro}) \qquad \frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash tu : B} (\to \text{ elim})$$

$$\frac{\Gamma \vdash u : B \qquad \Gamma, x : B \vdash t : A}{\Gamma \vdash tx \land u} (\text{cut})$$

Remark

- The axiom rule uses weakening.
- The binary rules use contraction.
- If $\Gamma \vdash t : A$ is derivable, then $\mathbf{fv}(t) \subseteq \mathbf{dom}(\Gamma)$.

Simple Types for Explicit Substitutions - Multiplicative System

$$\frac{x : A \vdash x : A}{x : A \vdash x : A} \text{ (ax)} \qquad \frac{\Gamma \vdash t : A \to B}{\Gamma \cup \Delta} \xrightarrow{\vdash tu : B} (\to e)$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to i1) \qquad \frac{\Gamma \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to i2)$$

$$\frac{\Gamma \vdash u : B}{\Gamma \cup \Delta} \xrightarrow{\vdash t [x \setminus u] : A} \text{ (cut1)}$$

$$\frac{\Gamma \vdash u : B}{\Gamma \cup \Delta} \xrightarrow{\vdash t [x \setminus u] : A} (\to i2)$$

Remark

- No weakening and no contraction logical rules.
- If $\Gamma \vdash t : A$, then $\mathbf{fv}(t) = \mathbf{dom}(\Gamma)$.
- The additive and the multiplicative systems are equivalent.
- Reduction preserves types.
- Typed pn-terms are strongly normalizing.

Principles of the Translation

(Call-by-Name) Translation of Types

$$\begin{array}{lll} \iota^+ & := & \iota \\ (A \to B)^+ & := & ?(A^-) \otimes B^+ \\ A^- & := & (A^+)^\perp \end{array}$$

Remark:

- $(?(A^-) \otimes B^+)^{\perp} = !A^+ \otimes B^-.$
- $(?A^-)^{\perp} = !A^+.$

Translation of Derivations

Let $\Gamma = x_1 : B_1, \dots, x_n : B_n$. Then $\Gamma \vdash t : A$ translates to a MELL Proof-Net written $(\Gamma \vdash t : A)^\circ$ with interface $?\Gamma^-, A^+$, where $?\Gamma^-$ means $?B_1^-, \dots, ?B_n^-$

Translating (ax)

Original derivation:

$$\frac{}{x:A \vdash x:A}$$
 (ax)

Translating $(\rightarrow e)$

Original derivation:

$$\frac{\Gamma_{t}, \Gamma_{tu} \vdash t : A \to B \qquad \Gamma_{u}, \Gamma_{tu} \vdash u : A \qquad \Gamma_{t} \# \Gamma_{u}}{\Gamma_{t}, \Gamma_{u}, \Gamma_{tu} \vdash tu : B} (\to e) \qquad \qquad \Gamma_{t} \qquad \Gamma_{tu} \qquad$$

Translating $(\rightarrow i1)$

Original derivation:

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x.t : A \to B} (\to i1)$$

Translating $(\rightarrow i2)$

Original derivation:

$$\frac{\Gamma \vdash t : B \qquad x \notin \mathbf{fv}(t)}{\Gamma \vdash \lambda x.t : A \to B} (\to i2)$$

Translating (cut1)

Original derivation:

$$\frac{\Gamma_{u},\Gamma_{tu} \vdash u : B \qquad \Gamma_{t},\Gamma_{tu},x : B \vdash t : A \qquad \Gamma_{t} \# \Gamma_{u}}{\Gamma_{u} \ , \ \Gamma_{t} \ , \ \Gamma_{tu} \ \vdash t[x \backslash u] : \ A} \text{ (cut1)}$$

Translating (cut2)

Original derivation:

$$\frac{\Gamma_{u}, \Gamma_{tu} \vdash u : B \qquad \Gamma_{t}, \Gamma_{tu} \vdash t : A \qquad \Gamma_{t} \# \Gamma_{u} \qquad x \notin \mathbf{fv}(t)}{\Gamma_{u}, \Gamma_{t}, \Gamma_{tu} \vdash t [x \setminus u] : A}$$
(cut2)

An Equivalence on pn-Terms

Equivalence (known as σ -equivalence by Regnier):

```
\begin{array}{lll} \lambda x.t & \equiv & \lambda y.t\{\{x \setminus y\}\} & y \text{ fresh} \\ t[x \setminus u] & \equiv & t\{\{x \setminus y\}\}[y \setminus u] & y \text{ fresh} \\ \text{H} & \langle t \rangle [x \setminus u] & \equiv & \text{H} & \langle t[x \setminus u] \rangle & \text{if } x \notin \mathbf{fv}(\text{H}) \text{ and no capture of free variables} \end{array}
```

Particular Instances:

```
\begin{array}{lll} t[y \setminus v][x \setminus u] & \equiv & t[x \setminus u][y \setminus v] & \text{if } y \notin \mathbf{fv}(u) \& x \notin \mathbf{fv}(v) \\ (\lambda y.t)[x \setminus u] & \equiv & \lambda y.t[x \setminus u] & \text{if no capture of free variables} \\ (tv)[x \setminus u] & \equiv & t[x \setminus u]v & \text{if } x \notin \mathbf{fv}(v) \end{array}
```

Static Relation Between the pn-Calculus and Linear Logic Proof-Nets

\equiv captures σ -equivalence	$\equiv_{\mathcal{E}}$ captures structural equivalence
on pn-Terms	on MELL Proof-Nets

Example of Static Relation

All the following pn-terms are all translated to the same Proof-Net:

 $\begin{array}{llll} (\lambda x.(\lambda y.y)w)z & ((\lambda y.y)w)[x \setminus z] & y[y \setminus w][x \setminus z] \\ (\lambda x.(\lambda y.y))zw & (\lambda y.y)[x \setminus z]w & y[x \setminus z][y \setminus w] \\ (\lambda y.(\lambda x.y)z)w & (\lambda y.y[x \setminus z])w & (\lambda x.y)[y \setminus w]z \\ (\lambda y.(\lambda x.y))wz & (\lambda x.y[y \setminus w])z & ((\lambda x.y)z)[y \setminus w] \end{array}$

Agenda

- Lambda-Calculus A Brief Reminder
- A Lambda Calculus with Explicit Substitutions
- From Typed Terms to MELL Static Translation
- From Typed Terms to MELL Dynamic Translation
- Some Properties of the Calculus
- Conclusion

Dynamic Relation Between pn-Terms and Linear Logic Proof-Nets

Reduction Rule on Terms	Reduction Rule on Proof-Nets
Fire a Redex	Multiplicative Cut Rules
Erase	Weakening-Box
Linearly Substitute	Dereliction-Box
Duplicate	Contraction-Box
Jump into an Argument	Box-Box

Erase

Erase a Term:

$$t[x \mid u] \mapsto_{gc} t \qquad x \notin \mathbf{fv}(t)$$

Erase a Proof-Net:

Linearly Substitute

Linearly Substitute:

$$H \langle x \rangle [x \backslash u] \mapsto_{1subs} H \langle u \rangle \qquad x \notin \mathbf{fv}(H)$$

Remove Modality:

Duplicate

Duplicate a Term:

$$H \langle \mathbf{A} \langle t \rangle \rangle [x \backslash u] \mapsto_{\text{dup}} H \langle \mathbf{A}_{[x \backslash u]} \langle t \rangle [x \backslash u] \rangle \qquad x \notin \mathbf{fv}(H), x \in \mathbf{fv}(t), \mathbf{fv}(A)$$

Duplicate a Proof-Net:

Jump into an Argument

Jump into an Argument:

$$\mathbf{H} \langle \mathbf{A} \langle t \rangle \rangle [x \backslash u] \mapsto_{\operatorname{arg}} \mathbf{H} \langle \mathbf{A} \langle t[x \backslash u] \rangle \rangle \qquad x \in \mathbf{fv}(t), x \notin \mathbf{fv}(\mathbf{H}), \mathbf{fv}(\mathbf{A})$$

Nesting:

Dynamic Relation Between pn-Terms and Linear Logic Proof-Nets

This gives a **fine-grained** computational interpretation of Intuitionistic Proof-Nets.

Agenda

- Lambda-Calculus A Brief Reminder
- 2 A Lambda Calculus with Explicit Substitutions
- From Typed Terms to MELL Static Translation
- From Typed Terms to MELL Dynamic Translation
- 5 Some Properties of the Calculus
- 6 Conclusion

Full Composition

Property

The pn-calculus enjoys full composition: every pn-term of the form $t[x \mid u]$ reduces to $t\{\{x \mid u\}\}$

Strong Bisimulation

Property

The relation \equiv on pn-terms is a strong bisimulation w.r.t. the reduction relation \rightarrow_{pn} :

Confluence

Property

The pn-calculus is **confluent** on **closed** and **open** terms (modulo the congruence ≡).

Normalization Properties

- **PN**: The new reduction relation enjoys **preservation** of β -normalization: if t is β -normalizing (β -N), then t is also **pn**-normalizing (pn-N).
- SN: (Simply) typed pn-terms are pn-normalizing.

Discussion

- The design of a calculus with explicit substitution enjoying confluence on open terms and PN at the same time was an open open for many years.
- In particular, the calculus $\lambda\sigma$ of Abadi-Cardelli-Curien-Lévy does not enjoy PN, a result due to Melliès.
- Other calculi with explicit substitution enjoy the same properties we discussed today, but none of them has a so tight relation with Girard's Proof-Nets.

Agenda

- Lambda-Calculus A Brief Reminder
- A Lambda Calculus with Explicit Substitutions
- From Typed Terms to MELL Static Translation
- From Typed Terms to MELL Dynamic Translation
- Some Properties of the Calculus
- Conclusion

Conclusion

Our Approach:

- Bridges the gap between term syntaxes and graphical formalisms for functional programming.
- Derives a new (hybrid) notion of substitution which mixes structural induction on terms with induction on the number of free variables to be substituted.
- The term calculus enjoys all the good properties one would expect from such kind of calculi.
- A nice formalism to academically explain the dynamics of Girard's intuitionistic linear logic proof-nets.

Other Possible Approaches:

- Add explicit weakenings and contractions to the term syntax: no more one-to-one dynamic correspondence.
- Change the reduction rules on proof-nets by using implicit quantification over boxes: complex operational semantics.

Possible Extensions:

■ Classical Logic: Polarized Proof-Nets.

