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What this talk is about?

Graphical Formalism

Term Calculus

Girard’s intuitionistic MELL proof-nets

Functional language called pn

—  BOX

Lambda Calculus with
Explicit Substitutions (ES)
(Ay.Ax.yx0)[x\w]u

Only BOXES can be erased/duplicated

Only ARGUMENTS can be erased/duplicated

Linear Context (outside BOX)
Non-Linear Context (inside BOX)

Linear Context (outside ARGUMENT)
Non-Linear Context (inside ARGUMENT)

Reduction free of bureaucracy
Local Reduction

Reduction free of commutative rules
Reduction at a distance: crosses contexts

Convenient for semantical studies
and abstract reasoning

Convenient for language implementation
and inductive reasoning
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The A-Calculus - Syntax

Terms : tbu=x|Ax.t|tu
Contexts : C:=< | Ax.C|Cr|C

m We use fv(¢) (resp. bv(z)) to denote the set of free (resp. bound) variables of z.

m We use a meta-level operation r{{x\u}} which simultaneously replaces all the free
occurrences of x in ¢ by u.

m We work modulo alpha-conversion (renaming of bound variables) generated by the
equation: Ax.r = Ay.t{{x\y} where y is fresh. For example Ax.xz = Ay.yz.

m C(r) denotes the context C where the hole ¢ has been replaced by 7. Possible
capture of free variables, e.g. (1x.0){x) = Ax.x.

m C{r) denotes the context C where the hole ¢ has been replaced by ¢ without
capturing any free variables. e.g. (1x.0){y) = Ax.y and (1x.0){x) not defined.
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The A-Calculus - Operational Semantics

m Only one rewriting rule:
(Ax.1) u g tfx\u}

m The reduction relation —; is generated by the relation +; closed by all contexts
C:
it t =5 u, then C(t) =5 Cu).
Alternative Definition:

t—>ﬁu t—>ﬁu [—>ﬁu

AxD)u—g t{x\ul}y  Axt—op Axu  v—op uv vt op vu

Both definitions are taken modulo alpha-conversion.

Lambda-Calculus is Turing complete.
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Examples

Let Id := Az.z. Then,

Erasing case: Wy.x)z =g x
Duplicating case: (y.yy)z —=p 22
Non-terminating case:  (Ay.yy)(Ay.yy) =g (Ay.yy)(dy.yy) =z ...

Contextual case: Q2. (Axy)(Id Id) =5 Az.(Ax.y)Id = Azy


www.irif.fr/~kesner

The A-Calculus - Simple Types

Types: A::=(|A— B

Typing Rules (Natural Deduction Style):

(axiom)
X1 CAL X, AL XA
Ix:Avt:B . I'tt:A—>B Tru:A .
(— intro) (— elim)
I'tAxt:A—> B I'tru:B

m Rule (axiom) uses weakening.

m Rule (— elim) is additive (implicit contraction).

m We denote by I' +-, ¢ : A the corresponding derivability relation.

m Aterm 1 is (simply) typable if there exists a derivation '+, 7 : A.
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Some Salient Remarks about Simply Typed Lambda-Calculus

m Typical Curry-Howard correspondence (A-calculus corresponds to minimal
intuitionistic logic).

m Provides only monomorphic information.
m Lack expressivity power but typability is decidable.
m Typability IMPLIES Strong Normalization, but the converse does not hold.

E.g. the term Ax.xx is not typable
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The A-Calculus - Some Typical Meta-Properties

Theorem (Confluence)

Ift —>; uandt —>/’; v, then there is ' such that u —>/§ t andv —»;; .

Theorem (Subject Reduction for Simple Types)
IfTryt:Aandt —g ', thenT ;' : A.

Theorem (Strong Normalization)

IfT Fyt: A, thent € SN(B), i.e. there is no infinite B-reduction sequence starting at t
(every B-reduction sequence starting at t terminates).
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To Go Further, Recommended Readings
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TEL FOUNBAREEND BF MATHENATICN Term
i Rewriting
Y 8 e Syslems

The Lambda
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BF S

R ]



www.irif.fr/~kesner

Our Goal Today

A-calculus = intermediate language = MELL Proof-Nets

m MELL is an extension of Linear Logic being able to capture intuitionistic and
classical logic.

m In MELL, weakening and contraction are handled in an explicit way by means of the
modalities ? and !.

The intermediate language:
m Lambda-terms with explicit substitutions + equivalence + reduction rules
m Explicit management of resources (erasure and duplication)

m Different alternatives: A-calculus, Linear Substitution Calculus, dex-calculus,
pn-calculus, Alxr-calculus, ...

Here, we focus on the pn-calculus.
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The pn-Calculus: Basic Syntax

Terms t,u,v
Term Contexts C

x| Ax.t | tu | t{x\u]
O | Ax.C| Cr | tC| Clx\t] | t[x\C]

m [_\_] is called an Explicit Substitution (ES)
m Free and bound variables (written fv(_) and bv(_) resp.).
m Alpha-conversion:
Ax.t = Ay.f{x\y} y fresh
fx\u]l = tfx\y}iy\ul yfresh
Example (x y)[x\Az.zw] = (X’ y)[x'\AZ".Z" w].
m Pure terms: terms without explicit substitutions.
m Notations: C(r) (possible capture of free variables) and C{r) (capture-free).
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The Key Notions of Contexts

Contexts make it possible to reason at a distance.

Linear Contexts: H =< | Ax.H| Hr | H[x\7]
(Outside Arguments)

Non-Linear Contexts: A =10 t[y\O]
(Arguments)

m Substitution Contexts (Special Linear Contexts): L = ¢ | L[x\7]
m Examples:

m H =.0y)z

B L =O[x\xllx\z

B A =y0.
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Decomposing Terms Using Linear/Non-Linear Contexts

Property

Given x € fv(u), then u can be written in one of the following forms:
m H (x), withx ¢ fv(H),
B H(A®@),withx¢fv(H), x¢fv(A), x e fv(),
m H(A@®),withx¢fv(H), xefv(A), x € fv(),

Example:
B u = Ay.xyz can be written as H (x), with H = 1y.0yz,
m u = ((y(xy))z) can be written as H ( A (1)), with H =0z, A =yd andt=xy
®m u = (((xy)x)z) can be written as H ( A (¢)), with H =0z, A = (xy)0 andt = x.
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The pn-Calculus: Intuitions

m There are only five basic operational rules constituting the pn-reduction relation.
m They operate at a distance: they bypass linear and non-linear contexts.

m Only arguments of terms can be erased/duplicated.
m Intuition behind the five basic operational rules:
m The g-reduction rules is decomposed/refined into different atomic actions
m One possible action is to fire a redex , by delaying the computation of the created
substitution.
m Another possible action is to erase an argument.
m Another possible action is to linearly substitute an occurrence of some variable by a
term.
m Another possible action is to jump into an argument .

m Another possible action is to duplicate some argument
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The pn-Calculus: Operational Semantics

Fire a Redex

Rule: L (Axdu g L (x\ul)

Erase

Rule: if[x\u] 4 ¢ x¢fv()

Linearly Substitute

Rule: H (x)[x\u] H1sups H{u) x¢fv(H)

Jump into an Argument

Rule: H{A ) [X\ul H (A (t[x\u])) xefv(r),x¢ fv(H),fv(A)

Duplicate

Rule: H{A ) xX\ul  —awp H (A OIx\ul)  xetv@.x e tvo). tva)

™ L L
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Example

(A2 Axyx0)wu)y  —a
((y.Axyxx)[z\wlw)y =4
((Ay.Ax.yxx)u)v —a
(Ax.yxx)[y\ulv —ap
(0x)[x\v][y\ul —1subs
((ux)x)[x\v] —dup
((ux)[x\v]0)[x\V] g
((ux)[x\v]x[x\v]) 1subs
((ux)[x\v]v) g

(ux[x\v])v —1subs (UV)V)
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A New Definition of the Substitution Operation

Defining the substitution operation r{{x\u}:
m By induction on the structure of r.
m By induction on the # of free occurrences of x in z.
m Our notion of substitution is a MIX of the two:

Structure of 7 : Rules { —arg - Jump into an Argument

—gc ! Erase
(0 ocurrences)
—1swps . Linearly Substitute
(1 ocurrence)
—dup - Duplicate
(more than 1 ocurrence)

# of free occurrences of xint: Rules
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Some Properties

Lemma (Stability of Free Variables)
m Ift —dB,var,arg,dup U, then fV([) = fv(u).
m Ift =4 u, thentv(s) 2 fv(u).

Remark In A-calculus no special rule for erasing.
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The pn-calculus and MELL Proof-Nets

Has anyone noticed any similarity between

the operational semantics of pn and
the operational semantics of MELL proof nets?
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Relation Between the pn-Calculus and MELL Proof-Nets

Static Translation Dynamic Translation
Typed pn-Terms Reduction Steps on pn-Terms
to to
Linear Logic Proof-Nets | Reduction Steps on Linear Logic Proof-Nets
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The Static Translation - Some Intuitions

m Linear contexts of terms (outside arguments) are translated to
linear contexts of proof-nets (outside BOXES).

m Non-linear contexts of terms (arguments) are translated to
non-linear contexts of proof-nets (BOXES).

m Arguments of applications and substitutions (that can be erased/duplicated) are
translated to BOXES (that can be erased/duplicated).

m Linear variables are translated to Derelicted axioms (variable y).
m Void variables are translated to Weakening (variable z).
m Duplicated variables are translated to Contraction (variable w).

Example:

ax = a
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Simple Types for Explicit Substitutions - Addivite System

(axiom)
X1 A, X Ay R XA
I'x:Avt:B . ''+tr:A—-B T ru:A .
(— intro) (— elim)
I'rAxt:A— B I''+tu:B

I'tu:B T ,x:Brrt:A
I Fox\u]:A

(cut)

Remark
m The axiom rule uses weakening.
m The binary rules use contraction.
m IfI"+7: Ais derivable, then fv(r) € dom(T’).
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Simple Types for Explicit Substitutions - Multiplicative System

I'tr:A—>B Aru:A

— (ax) e
X:AFx:A TUA +tu: B (=
Ix:Avrt:B ) F'rr:B xé¢tv(r) )
(— i1 (= i2)
I'rAxt:A—> B I'rAxr:A—> B

I'ru:B A x:Brrt:A
FUA Fi[x\u]:A
I'ru:B Avrt:A x¢fv@)
FTUA r[x\u]:A

(cutl)

(cut2)

Remark
m No weakening and no contraction logical rules.
m [fTr1z: A, then fv(r) = dom(D).
m The additive and the multiplicative systems are equivalent.
m Reduction preserves types.
m Typed pn-terms are strongly normalizing.
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Principles of the Translation

(Call-by-Name) Translation of Types

ot L

(A = B)* - AA")9B*
A (A*)*

Remark:
m (2(A7)9BY)*: =I1A"® B".
m (?2A7)* =IA".

Translation of Derivations
LetI'=x;:By,...,x,:B,. Then I' rt: A translates to a MELL Proof-Net written
(" -t : A)° with interface ?T'", A*, where ?I'"" means ?B7,..., 7B,

n- A*
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Translating (ax)

Original derivation:

— (@)
x:Arx: A
Proof-Net Translation:
A A*
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Translating (— e)

Original derivation:

r,lurt:A—B

I,Tuvru:A

I, I,, I, vtu: B

Proof-Net Translation:

T, Iyri:A— B)°

;.

2498 M,

tu

ow, M, AT B B*

u

TS, 1A*® B

cut
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Translating (— il)

Original derivation:

Proof-Net Translation:

ILx:Av?t:B

(= i1
I +ixt: A-> B

T,x:Art:B)°
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Translating (— i2)

Original derivation:
I'rr:B x¢fv()
(—

I +ixt: A> B

i2)

Proof-Net Translation:

X

%
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Translating (cutl)

Original derivation:

Colwru:B ToTwx:Bri:A THL,

Proof-Net Translation:

(cutl)
I,, T, Iy Fox\ul: A

At

‘
‘
ClwxiBriidy ) (Culuruisy )
I
| |
o~ MM !

B

L ) &

o

cut)
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Translating (cut2)

Original derivation:

Tolwbru:B T,Twri:A THL,  x¢fv@)

(cut2)
L,, I, Iy rox\u]l: A
Proof-Net Translation:
(CT k12 AP ) i ((rt,,rm bu By ) ;
A‘+ ?l‘",’ ’?l‘"; iﬁ 7777777777 ff‘t ) J
Yoo
?l";u ;, 'B* 2B
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An Equivalence on pn-Terms

Equivalence (known as o-equivalence by Regnier):

Ax.t = Ay.f{x\y} y fresh
tx\u] = rfx\yhly\ul yfresh
H(H[x\u] = H{[x\u]) if x ¢ fv(H) and no capture of free variables

Particular Instances:

tyWwilx\ul = tfx\ully\v] ify¢fv(u) & x ¢ fv(v)
Wy.Hlx\u]l = Ay.tlx\u] if no capture of free variables
(tv)[x\u] = tx\ulv if x ¢ fv(v)
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Static Relation Between the pn-Calculus and Linear Logic Proof-Nets

translation

if and only if

translation

= captures o-equivalence | =g captures structural equivalence
on pn-Terms on MELL Proof-Nets
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Example of Static Relation

All the following pn-terms are all translated to the same Proof-Net:
Ax(lyywiz ((yywlxazd  yDywllazd - - —

(Aeyynaw  (ywladzdw yxz]Diw] O
(Ay.(Axy)z)w  (Dylx\zDw  (Axy)y\wlz

(Ay.(Axyywz  (AxyDwhDz  (Axz)[yiw]
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Dynamic Relation Between pn-Terms and Linear Logic Proof-Nets

One-to-many Many-to-one One-to-one

~ /N /N
Reduction Rule on Terms _

Fire a Redex Multiplicative Cut Rules
Erase Weakening-Box
Linearly Substitute Dereliction-Box
Duplicate Contraction-Box

Jump into an Argument Box-Box
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Erase

Erase a Term:

tx\ul =gt x g fv(p)

Erase a Proof-Net:

I ~
{ D
T T
At o o
| I )
o = } 2C(w.b) T
” ‘\T T T
?A 1At

N N /
——{eui—
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Linearly Substitute

Linearly Substitute:

H (x)[x\uj M 1subs H <u>

Remove Modality:

— I ~
N v h -
1 I
A A At o
) 1
H‘\ Y 1
d) (1) )
\1. N T
24 1At

=e(d. by

x ¢ fv(H)
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Duplicate

Duplicate a Term:

H (A ) x\ul Pap H A Ox\ul)

Duplicate a Proof-Net:

x & fv(H), x € fv(z), fv(8)

— ]G] | -
e D) ( )] T T
B 1 T A 7 74 | At T At T
A 7A A A T ran f @ f
\ ! A ki A 7
'O oy ! ele.b) T T T jr
p— \H ki AL 14t
now @ O
N fa— = @%
.
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Jump into an Argument

Jump into an Argument:

H{A @) [x\ul =y HOAX\ul))  xefv(),x ¢ fv(H), fv(A)

Nesting:
-~ ~ p ~
= ~ ~ N / N J
i \ P T T T T T
I \ I B- M A A "
Bt w74 A A - i
L | | L I 1]
1 = T =eb.b 7A
‘\; T 24 U‘J' 2 :rf
oo —e—
- @ J
Ol \
o A
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Dynamic Relation Between pn-Terms and Linear Logic Proof-Nets

One-to-many Many-to-one One-to-one

This gives a fine-grained computational interpretation of Intuitionistic Proof-Nets.
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Properties of the Term Calculus
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Full Composition

Property

The pn-calculus enjoys full composition:
every pn-term of the form #[x\u] reduces to #{{x\u}}
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Strong Bisimulation

Property

The relation = on pn-terms is a strong bisimulation w.r.t. the reduction relation —, :
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Confluence

Property
The pn-calculus is confluent on closed and open terms (modulo the congruence =). J

N
NS
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Normalization Properties

m PN: The new reduction relation enjoys preservation of S-normalization: if 7 is
B-normalizing (8-N), then ¢ is also pn-normalizing (pn-N).

m SN: (Simply) typed pn-terms are pn-normalizing.
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Discussion

m The design of a calculus with explicit substitution enjoying confluence on open
terms and PN at the same time was an open open for many years.

m In particular, the calculus Ao~ of Abadi-Cardelli-Curien-Lévy does not enjoy PN, a
result due to Mellies.

m Other calculi with explicit substitution enjoy the same properties we discussed today,
but none of them has a so tight relation with Girard’s Proof-Nets.
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Conclusion

Our Approach:
m Bridges the gap between term syntaxes and graphical formalisms for functional
programming.
m Derives a new (hybrid) notion of substitution which mixes structural induction on
terms with induction on the number of free variables to be substituted.

m The term calculus enjoys all the good properties one would expect from such kind
of calculi.

m A nice formalism to academically explain the dynamics of Girard’s intuitionistic
linear logic proof-nets.

Other Possible Approaches:

m Add explicit weakenings and contractions to the term syntax:
no more one-to-one dynamic correspondence.

m Change the reduction rules on proof-nets by using implicit quantification over boxes:
complex operational semantics.

Possible Extensions:
m Classical Logic: Polarized Proof-Nets.


www.irif.fr/~kesner

ATTENTION
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