Introduction to lype Theories

iIntroductory lecture

Anja Petkovic Komel

OPLSS 2025

Why Type Theories?

Why Type Theories?

 Answer for mathematicians: because they are beautiful mathematical
foundations that can express a constructive approach.

Why Type Theories?

 Answer for mathematicians: because they are beautiful mathematical
foundations that can express a constructive approach.

 Answer for the rest of the world: because proof assistants are built on
them.

Why Type Theories?

 Answer for mathematicians: because they are beautiful mathematical
foundations that can express a constructive approach.

 Answer for the rest of the world: because proof assistants are built on
them.

so, why proof assistants?

Verifying Software Correctness

Ariane 5 rocket, 4 June 1996

Verifying Software Correctness

Ariane 5 rocket, 4 June 1996

[cs.PL]| 26 Apr 2021

Extracting Smart Contracts Tested and Verified in Coq

Danil Annenkov', Mikkel Milo?, Jakob Botsch Nielsen!, and Bas Spitters!

! Concordium Blockehain Research Center, Aarhus University
* Department of Computer Science. Aarhus University, Denmark

Abstract

We implement extraction of Coq programs to functional langnages based on MetaCoq’s certified erasure. As
part of this, we implement an optimisation pass removing unused arguments. We prove the pass correct wrt. a
conventional call-by-value operational semantics of functional languages. We apply this to two functional smart
contract languages. Liquidity and Midlang, and to the functional language Elm. Our development is done in the
context of the ConCert framewark that enahles amart contract verification. We contrihnte a verified hoardroom
voting smart contract featuring maximum voter privacy such that each vote is kept private except under collusion
of all other parties. We also integrate property-hased testing into ConCert nsing QuickChick and our development,
is the firsi Lo support testing properties of interacling smart contracts. We tesi several complex contracts such
as a DAO-like contract. an escrow contract, an implementation of a Decentralized Finance (DcFi) contract which
includes a custom token standard (Tezos FA2), and more. In tolal, this gives us a way Lo wrile dependent
programs in Coq, test them semi-automatically. verify, and then extract to functional smart contract languages,
while retaining a small Lrusted computing base of only MetaCoq and ithe pretly-printers into Lhese languages.

1 Introduction

Smart contracts are programs running on top of a blockehain, They often control large amounts of
cryptocurrency and cannat be changed after deployment. Unfortunately, many vulnerabilities have

|cs.PL] 26 Apr 2021

Extracting Smart Contracts Tested and Verified in Coq

Danil Annenkov', Mikkel Milo?, Jakob Botsch Nielsen!, and Bas Spitters!

! Concordium Blockehain Research Center, Aarhus University
? Department of Computer Science. Aarhus University, Denmark

Abstract

We implement extraction of Coq programs to functional langunages hased on MetaCloq’s certified erasure.
part of this, we implement an optimisation pass removing unused arguments. We prove the pass correct wri
conventional call-by-value operational semantics of functional languages. We apply this to two functional sm
contract languages. Liguidity and Midlang, and to the functional language Elm. Our development is done in
context of the ConCert framewark that enahles amart contract verification. We contritnte a verified hoardra
voting smart contract featuring maximum voter privacy such that each vote is kept private except under collus
of all other parties. We also integrate property-hased testing into ConCert nsing QuickChick and our developm
is the firsi to support testing properties of interacling smart conlracts. We lesi several complex contracts s
as a DAO-like contract. an cscrow contract, an implementation of a Decentralized Finance (DcFi) contract wh
includes a custom token standard (Tezos FA2), and more. In tolal, this gives us a way Lo wrile depend
programs in Coq, test them semi-automatically. verify, and then extract to functional smart contract languag
while retaining a small Lrusted computing base of only MetaCoq and the pretly-printers into Lhese languages.

1 Introduction

Smart contracts are programs running on top of a blockehain., They often control large amounts
cryptocurrency and cannat be changed after deployment. Unfortunately, many vulnerabilities h:

Formal Certification of a Compiler Back-end

or: Programming a Compiler with a Proof Assistant

Xavier Leroy

INRIA Rocquencourt
Xavier.Leroy@inria.fr

Abstract

This paper reports on the development and formal certification
(proof of semantic preservation) of a compiler from Cminor (a C-
like imperative language) to PowerPC assembly code, using the
Coq proof assistant both for programming the compiler and for
proving its correctness. Such a certified compiler is useful in the
context of formal methods applied to the certification of critical
software: the certification of the compiler guarantees that the safety
properties proved on the source code hold for the executable com-
piled code as well.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs): Specifying and verifying and reasoning about
programs—Mechanical verification.: D.2.4 [Software engi-
neering]: Software/program verificaion—Correctness proofs,
formal methods, reliability; D.3.4 [Programming languages):
Processors—Compilers, optimization

General Terms Languages, Reliability, Security, Verification.

Keywords Certified compilation, semantic preservation, program
proof, compiler transformations and optimizations, the Coq theo-
rem prover.

can potentially invalidate all the guarantees so painfully obtained
using formal methods. In other terms, from a formal methods per-
spective, the compiler is a weak link between a source program
that has been formally verified and a hardware processor that, more
and more often, has also been formally verified. The safety-critical
software industry is aware of this issue and uses a variety of tech-
niques to alleviate it, such as conducting manual code reviews of
the generated assembly code after having turned all compiler opti-
mizations off. These techniques do not fully address the issue, and
are costly in terms of development time and program performance.

An obviously better approach is to apply formal methods to
the compiler itself in order to gain assurance that it preserves the
semantics of the source programs. Many different approaches
have been proposed and investigated, including on-paper and
on-machine proofs of semantic preservation, proof-carrying code,
credible compilation, translation validation, and type-preserving
compilers. (These approaches are compared in section 2.) For
the last two years, we have been working on the development of
a realistic, certified compiler. By certified, we mean a compiler
that is accompanied by a machine-checked proof of semantic
preservation. By realistic, we mean a compiler that compiles a
language commonly used for critical embedded software (a subset

nf (Y dovwun 1t accoamhlyu ende for a nroreceny coommanly nead in

[cs.PL] 26 Apr 2021

Extracting Smart Contracts Tested and Verified in Coq

Danil Annenkov', Mikkel Milo?, Jakob Botsch Nielsen!, and Bas Spitters!

! Concordium Blockehain Research Center, Aarhus University
? Department of Computer Science. Aarhus University, Denmark

Abstract .
Xavier Leroy

INRIA Rocquencourt
Xavier.Leroy@inria.fr

We implement extraction of Coq programs to functional langnages hased on MetaCloq’s certified erasure.
part of this, we implement an optimisation pass removing unused arguments. We prove the pass correct wri
conventional call-by-value operational semantics of functional languages. We apply this to two functional sm
contract languages. Liguidity and Midlang, and to the functional language Elm. Our development is done in
context of the ConCert framewark that enahles amart contract verification. We contritnte a verified hoardra
voting smart contract featuring maximum voter privacy such that each vote is kept private except under collus
of all other parties. We also integrate property-hased testing into ConCert nsing QuickChick and our developm
is the firsi Lo support tesiing properties of interacling smart conlracts. We lesi severs
as a DAO-like contract. an escrow contract, an implementation of a Decentralized Finar
includes a custom token standard (Tezos FA2), and more. In total, this gives us a CO MP CERT
programs in Coq, test them semi-automatically. verify, and then extract to functional s

while retaining a small Lrusted computling base of only MetaCoq and the pretly-printer

COMPILERS YOU CAN FORMALLY TRUST

1 Introduction

Smart contracts are programs running on top of a blockchain, They often cc

cryptocurrency and cannaot be changed after deployment. Unfortunately, ma The CompCert project investigates the formal verification of realistic compilers usable for
critical embedded software. Such verified compilers come with a mathematical, machine-
checked proof that the generated executable code behaves exactly as prescribed by the
semantics of the source program. By ruling out the possibility of compiler-introduced bugs,
verified compilers strengthen the guarantees that can be obtained by applying formal

methods to source programs.

The main result of the project is the CompCert C verified compiler, a | Sof:tcv\'t’;re
high-assurance compiler for almost all of the C language (ISO C 2011), System
generating efficient code for the ARM, PowerPC, RISC-V and x86 | A‘f’ f’"d
processors. 2 -2021. | /4

< Download CompCert C & Read the manual

Formal Certification of a Compiler Back-end

or: Programming a Compiler with a Proof Assistant

MENU

Home

Partners

Motivations

Research

The Compcert C compiler
Downloads

Publications

N N N N N N XN

lcs.PL] 26 Apr 2021

Extracting Smart Contracts Tested and Verified in Coq

Danil Annenkov', Mikkel Milo?, Jakob Botsch Nielsen!, and Bas Spitters! Formal Certification of a Compiler Back-end
1 Coneordium Blockehain Research Center, Aarhus University or: Programming a Compiler With a Proof Assistant

* Department of Computer Science. Aarhus University, Denmark

Abstract .
Xavier Leroy
We implement extraction of Coq programs to functional langunages hased on MetaCoq’s certified erasure.

- - INRIA Rocquencourt
Xavier.Leroy@inria.fr

RT

A Formally Certified Crash-proof File System COMPILERS YOU CAN FORMALLY TRUST

Overview roject investigates the formal verification of realistic compilers usable for

MENU

'd soft . Such verified il ith thematical hine-
FSCQ is the first file system with a machine-checkable proof (using the Coq proof assistant) that its Sottware. Such veritied compriers come with a mathematicat, machine

implementation meets its specification and whose specification includes crashes. FSCQ provably avoids \at the generated executable code behaves exactly as prescribed by the Home P

bugs t}}at have plagued. previous file systems, such as performir.lg disk writes.without sufficient barriers or source program. By ruling out the possibility of compiler-introduced bugs,

forgetting to zero out directory blocks. If a crash happens at an inopportune time, these bugs can lead to . ’ Partners A

data loss. FSCQ's theorems prove that, under any sequence of crashes followed by reboots, FSCQ will s strengthen the guarantees that can be obtained by applying formal o

recover the file system correctly without losing data. -e programs. Motivations A

Research A
Peop le of the project is the CompCert C verified compiler, a i iCM ‘ The Compcert C compiler A
ortware

« Haogang Chen ompiler for almost all of the C language (I1SO C 2011), System Downloads A

+ Daniel Ziegler ent code for the ARM, PowerPC, RISC-V and x86 Af"‘f’.‘d Publications A

« Tej Chajed e %

« Adam Chlipala

M. Frans Kaashoek

Nickolai Zeldovich ompCert C & Read the manual

Formalised Mathematics

Formalised Mathematics

Xiang's formal proof of the four color theorem

A formal proof of the four color theorem

Limin Xiang

Department of Information Science,

Kyushu Sangyo University

3-1 Matsukadai 2-Chome, Higashi-ku, Fukuoka 813-8503, Japan

E-mail: xiang@is.kyusan-u.ac.jp
Tel: +81-92-673-5400, Fax: +81-92-673-5454

Manuscript, April 16, 2009

Abstract: A formal proof has not been found for the four color theorem since 1852 when Francis Guthrie first
conjectured the four color theorem. Why? A bad idea, we think, directed people to a rough road. Using a similar
method to that for the formal proof of the five color theorem, a formal proof is proposed in this paper of the four color
theorem, namely, every planar graph is four-colorable. The formal proof proposed can also be regarded as an
algorithm to color a planar graph using four colors so that no two adjacent vertices receive the same color.

A planar graph G is a Graph that may be embedded
1. Introduction in the plane without intersecting edges.

Since 1852 when Francis Guthrie first conjectured

A graph G is said to be n -colorable, denoted by
the four color theorem [1], a formal proof has not been S S : .
found for the four color theorem. The four color ¢(G)=n, if its possible to assign one of 7 colors to

theorem, or the four color map theorem, states that each vertex in such a way that no two connected
given any separation of the plane into contiguous vertices have the same color.

Formalised Mathematics

Xiang's formal proof of the four color the«

A formal proof of the four color theorem

Limin Xiang
Department of Information Science,
Kyushu Sangyo University

3-1 Matsukadai 2-Chome, Higashi-ku, Fukuoka 813-8503, Japan

E-mail: xiang@is.kyusan-u.ac.jp
Tel: +81-92-673-5400, Fax: +81-92-673-5454

Manuscript, April 16, 2009

Abstract: A formal proof has not been found for the four color theorem since 1852 when Francis Guthrie firs
conjectured the four color theorem. Why? A bad idea, we think, directed people to a rough road. Using a sirr
method to that for the formal proof of the five color theorem, a formal proof is proposed in this paper of the fc
theorem, namely, every planar graph is four-colorable. The formal proof proposed can also be regarded as ¢
algorithm to color a planar graph using four colors so that no two adjacent vertices receive the same color.

1. Introduction

Since 1852 when Francis Guthrie first conjectured
the four color theorem [1], a formal proof has not been
found for the four color theorem. The four color
theorem, or the four color map theorem, states that
given any separation of the plane into contiquous

A planar graph G is a Graph that may be en
in the plane without intersecting edges.

A graph G is said to be n -colorable, den
c(G)=n, if it's possible to assign one of n ¢

each vertex in such a way that no two co
vertices have the same color.

A Machine-Checked Proof
of the Odd Order Theorem

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
Francois Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor,
Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi,
and Laurent Théry

Microsoft Research - Inria Joint Centre

Abstract. This paper reports on a six-year collaborative effort that cul-
minated in a complete formalization of a proof of the Feit-Thompson Odd
Order Theorem in the C0OQ proof assistant. The formalized proof is con-
structive, and relies on nothing but the axioms and rules of the founda-
tional framework implemented by C0Q. To support the formalization, we
developed a comprehensive set of reusable libraries of formalized math-
ematics, including results in finite group theory, linear algebra, Galois
theory, and the theories of the real and complex algebraic numbers.

1 Introduction

The Odd Order Theorem asserts that every finite group of odd order is solvable.

A forme

Limin Xiang

Department of Infi
Kyushu Sangyo L
3-1 Matsukadai 2-
E-mail: xiang@is.
Tel: +81-92-673-£

Manuscript, April

Abstract: A form:
conjectured the fec
method to that for
theorem, namely,
algorithm to color

1. Introduction

Since 1852 wh
the four color thec
found for the fo
theorem, or the f
given any separ

Formalised Mathematics

Mathematics in Lean

e 1. Introduction

o 1.1. Getting Started
o 1.2. Overview

e 2. Basics

o 2.1. Calculating

o 2.2. Proving Identities in Algebraic Structures
o 2.3. Using Theorems and Lemmas

> 2.4. More on Order and Divisibility

o 2.5. Proving Facts about Algebraic Structures

e 3. Logic

> 3.1. Implication and the Universal Quantifier
o 3.2. The Existential Quantifier

o 3.3. Negation

o 3.4. Conjunction and Bi-implication

> 3.5. Disjunction

o 3.6. Sequences and Convergence

e 4, Sets and Functions

> 4.1, Sets
o 4.2. Functions
o 4.3. The Schroder-Bernstein Theorem

e 5. Number Theory

o 5.1. Irrational Roots
o 5.2. Induction and Recursion
o 5.3. Infinitely Many Primes

e 6. Abstract Algebra

o 6.1. Structures
o 6.2. Algebraic Structures
> 6.3. Building the Gaussian Integers

o 7. Topology

o 7.1. Filters
o 7.2. Metric spaces
o 7.3. Topological spaces

e 8. Differential Calculus

o 8.1. Elementary Differential Calculus
o 8.2. Differential Calculus in Normed Spaces

e 9. Integration and Measure Theory

o 9.1. Elementary Integration
o 9.2. Measure Theory
> 9.3. Integration

ince 1852 when Francis Guthrie firs
people to a rough road. Using a sirr
of is proposed in this paper of the fc
yroposed can also be regarded as ¢
It vertices receive the same color.

raph G is a Graph that may be en
‘without intersecting edges.

is said to be n -colorable, den
if it's possible to assign one of n «

X in such a way that no two co
re the same color.

A Machine-Checked Proof
of the Odd Order Theorem

ges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,

ancois Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor,

Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi,
and Laurent Théry

Microsoft Research - Inria Joint Centre

Abstract. This paper reports on a six-year collaborative effort that cul-
minated in a complete formalization of a proof of the Feit-Thompson Odd
Order Theorem in the C0OQ proof assistant. The formalized proof is con-
structive, and relies on nothing but the axioms and rules of the founda-
tional framework implemented by C0Q. To support the formalization, we
developed a comprehensive set of reusable libraries of formalized math-
ematics, including results in finite group theory, linear algebra, (Galois
theory, and the theories of the real and complex algebraic numbers.

1 Introduction

The Odd Order Theorem asserts that every finite group of odd order is solvable.

Active Research

P "DIGITAL Association for . . :
ACM 7 LIBRARY Computing Machinery Browse About Sign in Register

Journals Magazines Proceedings Books SIGs Conferences People Search ACM Digital Library Q Advanced Search

Conference Proceedings Upcoming Events Authors Affiliations Award Winners

~ Conference W

-— p p .
-~
‘ - - -

CPP: Certified Programs and Proofs
gl -

-9

AR N

o

Home > Conferences > CPP

¢ Feedback

0§ CPP - Certified Programs and Proofs

SIG Sponsors:
Certified Programs and Proofs (CPP) is an international conference on practical and theoretical

topics in all areas that consider formal verification and certification as an essential paradigm for
their work. CPP spans areas of computer science, mathematics, logic, and education.

SIGPLAN

Publication Count Available for Citation Count Downloads (6 Downloads (12 Downloefds Average CiFations Average Dov.vnloadS
Download weeks) months) (cumulative) per Article per Article

269 261 1,916 2,334 21,222 80,156 7 307

AN 0 I G ITA L Association for
ACM o ‘A LIBRARY Computing Machinery

Journals Magazines Proceedings Books SIGs Conferences People

Conference Proceedings Upcoming Events Authors Affiliations Award Winners

Conference s« g . .., - : v, < 7

- cep . T

_ CPP: Certified Programs and’Proo'f/s

Search within CPP

-

.
- P —

Home > Conferences > CPP

0§ CPP - Certified Programs and Proofs

SIG Sponsors:
Certified Programs and Proofs (CPP) is an international conference on practical and theoretical

topics in all areas that consider formal verification and certification as an essential paradigm for
their work. CPP spans areas of computer science, mathematics, logic, and education.

SIGPLAN

Available for Downloads (6 Downloads (12

Publication Count Citation Count

Download weeks) months)

269 261 1,916 2,334 21,222 80,156

Downloads
(cumulative)

l Subject Areas

Higher order logic
Formal languages and automata theory
Equational logic and rewriting
Automated reasoning
Semantics and reasoning

Formal software verification

Program verification

Logic and verification
Logic

Correctness .
Program reasoning

Type theory
Software verification

putabilit Operational semantics
Proof theory Verification
Software development process management
Const_ructive; mathematics

Average Citations Average Downloads
per Article per Article

7 307

A DIGITAL Association for
ACM@LIBRARY Computing Machinery

Journals ET-EFAL S Proceedings Books SIGs Conferences People

l Subject Areas

Conference Proceedings Upcoming Events Authors Affiliations

- Conference g W e Nl ‘SR 2
,"CP P " il h | : S Search within CPP
g = - .

CPP: Certified Programs and Proofs
- -

4-”'

— /'. E

Home > Conferences > CPP

The International Conference on

Interactive Theorem Proving

The ITP conference series is concerned with all aspects of interactive theorem proving,
ranging from theoretical foundations to implementation aspects and applications in
program verification, security, and the formalization of mathematics.

»SIGPLAN

Award Winners

Downloads
(cumulative)

80,156

Higher order logic
Formal languages and automata theory
Equational logic and rewriting
Automated reasoning
D o et i m e o all i ae E
»EeImMAntics andad reasonin :—.

Formal software verification

Program verification

Logic and verification
Logic

Correctness .
Program reasoning

Type theory
Software verification

Operational semantics

Proof theory Verification
Software development process management

Constructive mathematics

Average Citations Average Downloads
per Article per Article

7 307

l Subject Areas

Higher order logic

Formal languages and automata theory
gquational logic and rewriting

. Automated reasonlng
M 2 *DIGITAL Association for
AC n\ ‘; LIBRARY Computing Machinery ~ ' [8 _— P [l] | l 29] l ‘][l —

‘ ‘llll'_

Formal software verlflcatlon

Journals ET-EFAL S Proceedings Books SIGs Conferences People
Call for contributions Committees Invited speakers Accepted talks Registration Programme

& TYPES 2025

Conference Proceedings Upcoming Events Au ractical information Book of abstracts Group photo

onrerence 4 -
,CCfPP W i @ TYPES 2025

s | | _University of Strathclyde, Glasgow, Scotland - 9-13 June 2025

CPP'/Cgrtlﬁed Programs aﬂ Proofs
N | & ' , _ A The 31st International Conference on Types for Proofs and Programs will take place at the

el ;. Y - ' o 7 -4 University of Strathclyde from Monday 9 June to Friday 13 June 2025, and is organised by the
Mathematically Structured Programming_group. On Tuesday 10 June, there will be a co-located

Home > Conferences > CPP
Women in EuroProofNet event dedicated to gender balance in our community. The week after,

CALCO/MFEPS will also take place at the University of Strathclyde.

The TYPES conference is a forum to
present new and ongoing work in all
aspects of type theory and its applications,
especially in formalised and computer
assisted reasoning and computer
programming. Areas of interest include, but
are not limited to:

The International Conference on

- - constructive mathematics;
» applications of type theory;

1V VINC -

» dependently typed programming;

« industrial uses of type theory

technology;
The ITP conference series is concerned with all aspects of interactive theorem provi « meta-theoretic studies of type
ranging from theoretical foundations to implementation aspects and applications SYSiams;

» proof assistants and proof technology;

» automation in computer-assisted reasoning;

« links between type theory and functional programming;
» formalizing mathematics using type theory

program verification, security, and the formalization of mathematics.

Vladimir Voevodsky, 1966 - 2017

Proof Assistants

" 1 Agdo

Calculus of HEOREM PROVER
iInductive Martin-Lof
constructions type theory Calculus of
Inductive

- - cubical’ constructions
Rocg-HolT: .

Cubical type theory
Homotopy type theory
Unimath:

Univalent foundations

More Proof Assistants

Nuprl:

| Isabelle/HOL.:
Computational type theory

Higher order logic

Mizar: cubicaltt:
Tarski-Grothendick redTT: Cubical type theory
set theory with syntactical (Cartesian) cubical
weak types type theory

Arend:
F* Andromeda 2 Cubical type theory
Andromeda:

Extensional type theory General type theories

Why are we learning about type theories,

rather than using a proof assistant?

Why are we learning about type theories,

rather than using a proof assistant?

Structure of Lectures

Structure of Lectures

1. Martin-Lof type theory (MLTT)
following chapter 1 of
Egbert Rijke: Introduction to Homotopy Type Theory

Structure of Lectures

1. Martin-Lof type theory (MLTT)
following chapter 1 of

Egbert Rijke: Introduction to Homotopy Type Theory

2. Calculus of Inductive Constructions (CIC) & Rocq

Interactively proving (easy) theorems
Live coding + slides

Structure of Lectures

1. Martin-Lof type theory (MLTT)
following chapter 1 of
Egbert Rijke: Introduction to Homotopy Type Theory

2. Calculus of Inductive Constructions (CIC) & Rocq
Interactively proving (easy) theorems
Live coding + slides

3. If time permits: more Rocq or Meta-Theory of type theories
Haselwarter, P. G. and Bauer, A., “Finitary type theories with and without
contexts”

Disclaimer:

we will discuss type theories
syntactically.

Disclaimer:

we will discuss type theories
syntactically.

There is a whole lot of research about semantic models of type theories.
If interested, ask for references (or better yet, ask Paige Randall North)

- knowledge of category theory is a prerequisite.

