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Extracting Smart Contracts Tested and Verified in Coq

Danil Annenkov', Mikkel Milo?, Jakob Botsch Nielsen!, and Bas Spitters!

! Concordium Blockehain Research Center, Aarhus University
* Department of Computer Science. Aarhus University, Denmark

Abstract

We implement extraction of Coq programs to functional langnages based on MetaCoq’s certified erasure. As
part of this, we implement an optimisation pass removing unused arguments. We prove the pass correct wrt. a
conventional call-by-value operational semantics of functional languages. We apply this to two functional smart
contract languages. Liquidity and Midlang, and to the functional language Elm. Our development is done in the
context of the ConCert framewark that enahles amart contract verification. We contrihnte a verified hoardroom
voting smart contract featuring maximum voter privacy such that each vote is kept private except under collusion
of all other parties. We also integrate property-hased testing into ConCert nsing QuickChick and our development,
is the firsi Lo support testing properties of interacling smart contracts. We tesi several complex contracts such
as a DAO-like contract. an escrow contract, an implementation of a Decentralized Finance (DcFi) contract which
includes a custom token standard (Tezos FA2), and more. In tolal, this gives us a way Lo wrile dependent
programs in Coq, test them semi-automatically. verify, and then extract to functional smart contract languages,
while retaining a small Lrusted computing base of only MetaCoq and ithe pretly-printers into Lhese languages.

1 Introduction

Smart contracts are programs running on top of a blockehain, They often control large amounts of
cryptocurrency and cannat be changed after deployment. Unfortunately, many vulnerabilities have
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Formal Certification of a Compiler Back-end

or: Programming a Compiler with a Proof Assistant

Xavier Leroy

INRIA Rocquencourt
Xavier.Leroy@inria.fr

Abstract

This paper reports on the development and formal certification
(proof of semantic preservation) of a compiler from Cminor (a C-
like imperative language) to PowerPC assembly code, using the
Coq proof assistant both for programming the compiler and for
proving its correctness. Such a certified compiler is useful in the
context of formal methods applied to the certification of critical
software: the certification of the compiler guarantees that the safety
properties proved on the source code hold for the executable com-
piled code as well.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs): Specifying and verifying and reasoning about
programs—Mechanical verification.: D.2.4 [Software engi-
neering]: Software/program verificaion—Correctness proofs,
formal methods, reliability; D.3.4 [Programming languages):
Processors—Compilers, optimization

General Terms Languages, Reliability, Security, Verification.

Keywords Certified compilation, semantic preservation, program
proof, compiler transformations and optimizations, the Coq theo-
rem prover.

can potentially invalidate all the guarantees so painfully obtained
using formal methods. In other terms, from a formal methods per-
spective, the compiler is a weak link between a source program
that has been formally verified and a hardware processor that, more
and more often, has also been formally verified. The safety-critical
software industry is aware of this issue and uses a variety of tech-
niques to alleviate it, such as conducting manual code reviews of
the generated assembly code after having turned all compiler opti-
mizations off. These techniques do not fully address the issue, and
are costly in terms of development time and program performance.

An obviously better approach is to apply formal methods to
the compiler itself in order to gain assurance that it preserves the
semantics of the source programs. Many different approaches
have been proposed and investigated, including on-paper and
on-machine proofs of semantic preservation, proof-carrying code,
credible compilation, translation validation, and type-preserving
compilers. (These approaches are compared in section 2.) For
the last two years, we have been working on the development of
a realistic, certified compiler. By certified, we mean a compiler
that is accompanied by a machine-checked proof of semantic
preservation. By realistic, we mean a compiler that compiles a
language commonly used for critical embedded software (a subset

nf (Y dovwun 1t accoamhlyu ende for a nroreceny coommanly nead in
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1 Introduction

Smart contracts are programs running on top of a blockchain, They often cc

cryptocurrency and cannaot be changed after deployment. Unfortunately, ma The CompCert project investigates the formal verification of realistic compilers usable for
critical embedded software. Such verified compilers come with a mathematical, machine-
checked proof that the generated executable code behaves exactly as prescribed by the
semantics of the source program. By ruling out the possibility of compiler-introduced bugs,
verified compilers strengthen the guarantees that can be obtained by applying formal

methods to source programs.
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Limin Xiang
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Abstract: A formal proof has not been found for the four color theorem since 1852 when Francis Guthrie first
conjectured the four color theorem. Why? A bad idea, we think, directed people to a rough road. Using a similar
method to that for the formal proof of the five color theorem, a formal proof is proposed in this paper of the four color
theorem, namely, every planar graph is four-colorable. The formal proof proposed can also be regarded as an
algorithm to color a planar graph using four colors so that no two adjacent vertices receive the same color.

A planar graph G is a Graph that may be embedded
1. Introduction in the plane without intersecting edges.

Since 1852 when Francis Guthrie first conjectured

A graph G is said to be n -colorable, denoted by
the four color theorem [1], a formal proof has not been S S : .
found for the four color theorem. The four color ¢(G)=n, if its possible to assign one of 7 colors to

theorem, or the four color map theorem, states that each vertex in such a way that no two connected
given any separation of the plane into contiguous vertices have the same color.
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A Machine-Checked Proof
of the Odd Order Theorem

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
Francois Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor,
Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi,
and Laurent Théry

Microsoft Research - Inria Joint Centre

Abstract. This paper reports on a six-year collaborative effort that cul-
minated in a complete formalization of a proof of the Feit-Thompson Odd
Order Theorem in the C0OQ proof assistant. The formalized proof is con-
structive, and relies on nothing but the axioms and rules of the founda-
tional framework implemented by C0Q. To support the formalization, we
developed a comprehensive set of reusable libraries of formalized math-
ematics, including results in finite group theory, linear algebra, Galois
theory, and the theories of the real and complex algebraic numbers.

1 Introduction

The Odd Order Theorem asserts that every finite group of odd order is solvable.
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1. Martin-Lof type theory (MLTT)
following chapter 1 of
Egbert Rijke: Introduction to Homotopy Type Theory

2. Calculus of Inductive Constructions (CIC) & Rocq
Interactively proving (easy) theorems
Live coding + slides

3. If time permits: more Rocq or Meta-Theory of type theories
Haselwarter, P. G. and Bauer, A., “Finitary type theories with and without
contexts”
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Disclaimer:

we will discuss type theories
syntactically.

There is a whole lot of research about semantic models of type theories.
If interested, ask for references (or better yet, ask Paige Randall North)

- knowledge of category theory is a prerequisite.



