OREGON
PROGRAMMING
LANGUAGES

Introduction to Type Theories — Anja Petkovi¢ Komel

Lecture 2 - June 24, 2025

We continue from last lecture, introducing the rules of type theories. As these lectures are designed
around Egbert Rijke’s book [1], these notes won’t try to replicate the exact content from the book,
but instead act as a companion. Furthermore, they will include specificities from the lecture that
potentially do not appear in the book.

As a reminder, we have four kinds of judgments, namely for well-formed type, judgementally equal
types, well-formed term, and judgementally equal terms.

I'F A type ' A= B type 'Fa:A 'Fa=b:A

and, for each type construct, we will need five kinds of rules:

e Formation rules, which define how we can form the type

Introduction rules, which define how we can create values of that type

Elimination rules, which define how we can use values of that type and extract information

Computation rules, which define how the introduction and elimination rules interact

Congruence rules (sometimes omitted, in which case they are left implicit), which define that
all introduced terms are well-defined with respect to judgmental equality

1 Dependent functions

We will write J],.4) B(x) for the type of functions which take an argument z : A and return a
value of type B(x). It is also called the dependent product. You can refer to Rijke for more detailed
explanations of the rules. To give an overview roughly, they are

e Formation rule: [],. 4) B(2) is a type if B(z) is a type with = : A in the context.

1

Introduction to Type Theories Anja Petkovi¢ Komel

Iyz: At B(z) type

A concrete example of this would be:

x: NF Vec Nz type
F H(w:N) Vec Nz type

e Congruence Rule: omitted for it’s simple to understand.

' A=A type I'yz: At B(x) = B'(z) type
I'+ H(ac:A) B(l‘) = H(m:A’) B,(QT) type

e Introduction rule: If the term b(x) has type B(x) with x : A in the context, then the lambda
term Az.b(x) has type [],.4) B(z). This is how we can introduce a term with a dependent
function type.

I'z:AFb(z): B(x)
L' Az.b(x) : [1 ;.4 B(@)

A

A concrete example:

x:NF(0,0,...,0) : Vec Nz
FAz.(0,0,...,0) : [Ty Vec Na

e Elimination (evaluation) rule: If the function, f has type [],.4) B(z), then a z : A can be
introduced into the context and f applied to x has type B(x). This is function application.

UE [T]ga) B(@)
yx: AF f(x) : B(x)

ev

Here is a simpler concrete example of this:

= Az.(0,0,...,0) : [T, Vec Nz
z:NF (0,0,...,0): Vec Nz

€ev

Here is another example to illustrate why this is related to evaluation, once paired with
substitution.

1 OREGON
Complled ByI Y< PROGRAMMING

Mark Barbone, Dakota Bryan, Yunkai Zhang 2

Introduction to Type Theories Anja Petkovi¢ Komel

F Az.(0,0,...,0) : H(I:N) Vec Nz
x:NF(0,0,...,0): Vec Nz

ev

e Computation rules: 8 and 7

g
Iyx: AFb(z): B(x) 5
Dix: AF (Ay.b(y))(z) = b(z) : B(x)

— This rule shows local soundness. It says that a function may be constructed (as A\y.b(y)),
then immediately eliminated by applying it to an argument (x), and the original type
(B(x)) is preserved.

— A note about notation. In the 8 rule

Iyx: AFb(z): B(x) 5

Lz A (Ay.b(y))(z) = b(x) : B(x),
the notation —(—) is overloaded to mean two different things: it is both the syntax
for evaluation (i.e., function application), and also the syntax for a term with a free
variable / substituting a free variable (i.e. dependent on). Using ev for the first, and
more traditional substitution notation for the second, you might write this rule as

I''e:A+b: B 5

Iyz: At ev(Ay.b,x) =blz/y] : Blx/y],

where & may be free in both b and B.
n

LEf o Tlga B@) .
LAz f(z) = f: .0 Bl2)

— Function elimination (f(z)) then construction (Az.f(x)) (i.e. application then abstrac-
tion) perseveres the original type (H(ac:A) B(x)).

— A note about function extensionality. We have the n rule

I'-f: J] Bl
(2:4) .
T f=Xf(z): [[B).
)

(z:A

. OREGON
. PROGRAMMING
Compiled By: '\(\ LANGUAGES

Mark Barbone, Dakota Bryan, Yunkai Zhang 3

Introduction to Type Theories Anja Petkovi¢ Komel

An alternative rule which the 7 rule can be derived from (sometimes called extensionality,
although this term is very heavily overloaded) is

Ix: AF f(x) = g(x) : B(x)
T-f=g: [] Bx).

(z:A)

/

While 7 is a more traditional way to write this rule, 7’ is more along the lines of how
this rule is actually implemented in a type checker: to check that two functions f and
g are equal (below the line), it suffices to check that f(z) = g(x) in a context extended
by a fresh variable z : A (above the line).

e Congruence rules: omitted

1.1 Ordinary Function Types

A special case of (dependent) function type arises when both A and B are existing types within
the context I'. In this case, the codomain has no ”real” dependency.

The following definitions of functions and arrow types are directly quoted from Rijke[1].

A term f : H(x:A) B is a function that takes an argument z : A and returns f(z) : B. In other
words, terms of type H(z:) B are indeed ordinary functions from A to B. Therefore, we define the
type A — B of (ordinaryi functions from A to B by A — B :=[],.4) B.

If f: A — B is a function, then the type of A is also called the domain of f, and type of B is also
called the codomain of f.

e If A and B are well-formed types without depending on the function argument, but could be
looked up in the existing context I', then it is an “arrow” type.

e This rule (also see page 14 of [1]) is also an example of how we can introduce new notation
and symbols that extends the type theory.

To state these formally, we define as follows:

I' - A type I' - B type
I'x: A+ B type
Tk H(I:A)B type

' A= B:=]].a) B type

1 OREGON
Complled ByI Y< PROGRAMMING

Mark Barbone, Dakota Bryan, Yunkai Zhang 4

Introduction to Type Theories Anja Petkovi¢ Komel

1.2 Derivations

The exercise of providing derivations for the identity function and function composition was to
show that it is quite painful. A proof assistant will do much of this for us. The full derivations
may be found on pages 15 (identity) and 16 (composition). The proof trees are as follows:

Identity:
I' H A type
Fx:AFxz: A
Fr'FMxax:A—= A
'tidg:=Xz.x:A— A
Composition:

I'F A type I' - B type I'F B type ' C type
Ff BAr Ar) B Y T.g:CBy Bral):C
L,g:CB, f:BA2:AF f(x):B T,9:CB f:BAz:Ay:BFgly):C
L,g:CB f:BAx: Ak g(f(z)):C
T,g:CB f:BAF Mx.g(f(x)):CA
[,9:B— CFMA.g(f(x)): B4 =04
L' FAgAfAz.g(f(z): CB — (B4 = C4)
I F comp := Ag.AfAz.g(f(2)) : CB = (BA — C4)

Note that, B4 is just an alternative form of writing A — B.

2 Natural numbers

We introduce a type N of natural numbers. You can refer to Rijke and the slides for the rules.
Collectively, they are:

e Formation rule: N is a type

T‘cype N— form

e Introduction rules: 0, successors succ(n)
OREGON
Compiled By: '\(\ LANGUAGES

Mark Barbone, Dakota Bryan, Yunkai Zhang)

Introduction to Type Theories Anja Petkovi¢ Komel

}—ONIN

Fsucey: N — N

e Elimination rule: the induction principle for natural numbers

I',n:NF P(n) type I'Fpo: P(Oy) I'E ps : [Ty P(n) = P(sucen(n))
I' = indn(po, ps) : [1(nav) P(n)

N-ind

— Notice that in this rule, propositions are types. We are proving a proposition, so it must
have a type.

— Furthermore, remember that a proof is a well-formed derivable judgment that a term
has a type.

e Computation rules: how recursion evaluates when given 0 or succ(n)

I''n:NF P(n) type I'Fpo: P(Oy) I'Eps : [L vy P(n) = P(sucen(n))
Ik indN(pOapS’ON) =po: P(ON)

I''n:NF P(n) type I'Fpo: P(Oy) I'tps : [y P(n) = P(sucen(n))
I'.n : NF indn(po, ps, sucen(n)) = ps(n, indn(po, ps, n)) : P(sucen(n))

e Congruence rules: omitted
Ezample (addition). The term indy(—, —) lets us do recursion on natural numbers. We’d like to
define add : N — N — N satisfying the (pattern matching) equations

addm 0=m

add m succ(n) = succ(add m n)
We can do this using the term

add := Am.ind(m, An.\a.succ(a))
which satisfies the desired pattern matching equations.

It’s a lot easier to implement functions with pattern matching, but it is actually equivalent!! Proof
assistants like Lean implement pattern matching by automatically translating it to a suitable use
of ind, both for N and for any other inductively-defined type.

Other inductive types. Some other inductive types, whose rules follow a similar pattern to those
for N, include:

LOr at leas an be equivale epending e _exa 1le patte atching and ind
OREGON
Compiled ByI Y< PROGRAMMING

Mark Barbone, Dakota Bryan, Yunkai Zhang 6

Introduction to Type Theories Anja Petkovi¢ Komel

The unit type (1)

The empty type (&), with inductive principle indy : H(l,:@)P(x), and its non-dependent
version ex-falso :=indy:) — A

The dependent sum / coproduct X, 4y B()

Propositional Equality (=)

3 Dependent pairs

Given a type A and a type family =z : A + B(z) type, we define a type whose elements are pairs
(a,b), with @ : A and b : B(a). This type is written >, 4) B(z), and sometimes also called the
dependent sum type. It is equipped with a pairing function

pair : H B(z) — Z B(y)

(2:A) (y:A)

A note on confusing terminology The non-dependent pair type, A x B, is often called the
product of A and B. However, we use “dependent product” to mean the type of dependent
functions, and “dependent sum” to mean the type of dependent pairs.

To give a concrete example of this, imagine a vector of length 2, we will have:
pair 2 (0,0) : X5 Vec Nn
We can define the projections on pairs, and such projections would be the elimination rules of

dependent sums. Consider a type A and a type family B over A.

e The first projection map

pry : Z B(z)| = A

(z:A)
is defined as pri(z,y) := x.
e The second projection map
pry - H(pzz(zu@ B(w))B(prl (p))
is defined as pry(z,y) :=y.
Note that, from the induction principle given in the textbook, such definitions can also be postulated
th inducti g 14 of 1] book for further deduct; 1]
Comp”ed By: Y< 3§§§3§nmc

Mark Barbone, Dakota Bryan, Yunkai Zhang 7

Introduction to Type Theories Anja Petkovi¢ Komel

References

[1] Egbert Rijke. Introduction to Homotopy Type Theory. 2022. arXiv: 2212.11082 [math.L0].
URL: https://arxiv.org/abs/2212.11082.

1 OREGON
Complled ByI Y< PROGRAMMING

Mark Barbone, Dakota Bryan, Yunkai Zhang 8

