
Introduction to Type Theories — Anja Petković Komel

Lecture 2 - June 24, 2025

We continue from last lecture, introducing the rules of type theories. As these lectures are designed
around Egbert Rijke’s book [1], these notes won’t try to replicate the exact content from the book,
but instead act as a companion. Furthermore, they will include specificities from the lecture that
potentially do not appear in the book.

As a reminder, we have four kinds of judgments, namely for well-formed type, judgementally equal
types, well-formed term, and judgementally equal terms.

Γ ⊢ A type Γ ⊢ A
.
= B type Γ ⊢ a : A Γ ⊢ a

.
= b : A

and, for each type construct, we will need five kinds of rules:

• Formation rules, which define how we can form the type

• Introduction rules, which define how we can create values of that type

• Elimination rules, which define how we can use values of that type and extract information

• Computation rules, which define how the introduction and elimination rules interact

• Congruence rules (sometimes omitted, in which case they are left implicit), which define that
all introduced terms are well-defined with respect to judgmental equality

1 Dependent functions

We will write
∏

(x:A)B(x) for the type of functions which take an argument x : A and return a
value of type B(x). It is also called the dependent product. You can refer to Rijke for more detailed
explanations of the rules. To give an overview roughly, they are

• Formation rule:
∏

(x:A)B(x) is a type if B(x) is a type with x : A in the context.

1



Introduction to Type Theories Anja Petković Komel

Γ, x : A ⊢ B(x) type
Π

Γ ⊢
∏

(x:A)B(x) type

A concrete example of this would be:

x : N ⊢ Vec Nx type

⊢
∏

(x:N)Vec Nx type

• Congruence Rule: omitted for it’s simple to understand.

Γ ⊢ A
.
= A′ type Γ, x : A ⊢ B(x)

.
= B′(x) type

Π-eq
Γ ⊢

∏
(x:A)B(x)

.
=

∏
(x:A′)B

′(x) type

• Introduction rule: If the term b(x) has type B(x) with x : A in the context, then the lambda
term λx.b(x) has type

∏
(x:A)B(x). This is how we can introduce a term with a dependent

function type.

Γ, x : A ⊢ b(x) : B(x)
λ

Γ ⊢ λx.b(x) :
∏

(x:A)B(x)

A concrete example:

x : N ⊢ (0, 0, . . . , 0) : Vec Nx

⊢ λx.(0, 0, . . . , 0) :
∏

(x:N)Vec Nx

• Elimination (evaluation) rule: If the function, f has type
∏

(x:A)B(x), then a x : A can be
introduced into the context and f applied to x has type B(x). This is function application.

Γ ⊢ f :
∏

(x:A)B(x)
ev

Γ, x : A ⊢ f(x) : B(x)

Here is a simpler concrete example of this:

⊢ λx.(0, 0, . . . , 0) :
∏

(x:N)Vec Nx
ev

x : N ⊢ (0, 0, . . . , 0) : Vec Nx

Here is another example to illustrate why this is related to evaluation, once paired with
substitution.

Compiled By:

Mark Barbone, Dakota Bryan, Yunkai Zhang 2



Introduction to Type Theories Anja Petković Komel

⊢ λx.(0, 0, . . . , 0) :
∏

(x:N)Vec Nx
ev

x : N ⊢ (0, 0, . . . , 0) : Vec Nx

• Computation rules: β and η

β

Γ, x : A ⊢ b(x) : B(x)
β

Γ, x : A ⊢ (λy.b(y))(x)
.
= b(x) : B(x)

– This rule shows local soundness. It says that a function may be constructed (as λy.b(y)),
then immediately eliminated by applying it to an argument (x), and the original type
(B(x)) is preserved.

– A note about notation. In the β rule

Γ, x : A ⊢ b(x) : B(x)

Γ, x : A ⊢ (λy.b(y))(x)
.
= b(x) : B(x),

β

the notation −(−) is overloaded to mean two different things: it is both the syntax
for evaluation (i.e., function application), and also the syntax for a term with a free
variable / substituting a free variable (i.e. dependent on). Using ev for the first, and
more traditional substitution notation for the second, you might write this rule as

Γ, x : A ⊢ b : B

Γ, x : A ⊢ ev(λy.b, x)
.
= b[x/y] : B[x/y],

β

where x may be free in both b and B.

η

Γ ⊢ f :
∏

(x:A)B(x)
η

Γ ⊢ λx.f(x)
.
= f :

∏
(x:A)B(x)

– Function elimination (f(x)) then construction (λx.f(x)) (i.e. application then abstrac-
tion) perseveres the original type (

∏
(x:A)B(x)).

– A note about function extensionality. We have the η rule

Γ ⊢ f :
∏
(x:A)

B(x)

Γ ⊢ f
.
= λx.f(x) :

∏
(x:A)

B(x).
η

Compiled By:

Mark Barbone, Dakota Bryan, Yunkai Zhang 3



Introduction to Type Theories Anja Petković Komel

An alternative rule which the η rule can be derived from (sometimes called extensionality,
although this term is very heavily overloaded) is

Γ, x : A ⊢ f(x)
.
= g(x) : B(x)

Γ ⊢ f
.
= g :

∏
(x:A)

B(x).
η′

While η is a more traditional way to write this rule, η′ is more along the lines of how
this rule is actually implemented in a type checker: to check that two functions f and
g are equal (below the line), it suffices to check that f(x)

.
= g(x) in a context extended

by a fresh variable x : A (above the line).

• Congruence rules: omitted

1.1 Ordinary Function Types

A special case of (dependent) function type arises when both A and B are existing types within
the context Γ. In this case, the codomain has no ”real” dependency.

The following definitions of functions and arrow types are directly quoted from Rijke[1].

A term f :
∏

(x:A)B is a function that takes an argument x : A and returns f(x) : B. In other
words, terms of type

∏
(x:A)B are indeed ordinary functions from A to B. Therefore, we define the

type A → B of (ordinary) functions from A to B by A → B :=
∏

(x:A)B.

If f : A → B is a function, then the type of A is also called the domain of f , and type of B is also
called the codomain of f .

• If A and B are well-formed types without depending on the function argument, but could be
looked up in the existing context Γ, then it is an “arrow” type.

• This rule (also see page 14 of [1]) is also an example of how we can introduce new notation
and symbols that extends the type theory.

To state these formally, we define as follows:

Γ ⊢ A type Γ ⊢ B type
W

Γ, x : A ⊢ B type
Π

Γ ⊢
∏

(x:A)B type

Γ ⊢ A → B :=
∏

(x:A)B type

Compiled By:

Mark Barbone, Dakota Bryan, Yunkai Zhang 4



Introduction to Type Theories Anja Petković Komel

1.2 Derivations

The exercise of providing derivations for the identity function and function composition was to
show that it is quite painful. A proof assistant will do much of this for us. The full derivations
may be found on pages 15 (identity) and 16 (composition). The proof trees are as follows:

Identity:

Γ ⊢ A type

Γ, x : A ⊢ x : A

Γ ⊢ λx.x : A → A
Γ ⊢ idA := λx.x : A → A

Composition:

Γ ⊢ A type Γ ⊢ B type
(a)

Γ, f : BA, x : A ⊢ f(x) : B

Γ ⊢ B type Γ ⊢ C type
(b)

Γ, g : CB, y : B ⊢ g(y) : C

Γ, g : CB, f : BA, x : A ⊢ f(x) : B Γ, g : CB, f : BA, x : A, y : B ⊢ g(y) : C

Γ, g : CB, f : BA, x : A ⊢ g(f(x)) : C

Γ, g : CB, f : BA ⊢ λx.g(f(x)) : CA

Γ, g : B → C ⊢ λf.λx.g(f(x)) : BA → CA

Γ ⊢ λg.λf.λx.g(f(x)) : CB → (BA → CA)

Γ ⊢ comp := λg.λf.λx.g(f(x)) : CB → (BA → CA)

Note that, BA is just an alternative form of writing A → B.

2 Natural numbers

We introduce a type N of natural numbers. You can refer to Rijke and the slides for the rules.
Collectively, they are:

• Formation rule: N is a type

N-form⊢ N type

• Introduction rules: 0, successors succ(n)

Compiled By:

Mark Barbone, Dakota Bryan, Yunkai Zhang 5



Introduction to Type Theories Anja Petković Komel

⊢ 0N : N

⊢ succN : N → N

• Elimination rule: the induction principle for natural numbers

Γ, n : N ⊢ P (n) type Γ ⊢ p0 : P (0N) Γ ⊢ ps :
∏

(n:N) P (n) → P (succN(n))
N-ind

Γ ⊢ indN(p0, ps) :
∏

(n:N) P (n)

– Notice that in this rule, propositions are types. We are proving a proposition, so it must
have a type.

– Furthermore, remember that a proof is a well-formed derivable judgment that a term
has a type.

• Computation rules: how recursion evaluates when given 0 or succ(n)

Γ, n : N ⊢ P (n) type Γ ⊢ p0 : P (0N) Γ ⊢ ps :
∏

(n:N) P (n) → P (succN(n))

Γ ⊢ indN(p0, ps, 0N)
.
= p0 : P (0N)

Γ, n : N ⊢ P (n) type Γ ⊢ p0 : P (0N) Γ ⊢ ps :
∏

(n:N) P (n) → P (succN(n))

Γ, n : N ⊢ indN(p0, ps, succN(n))
.
= ps(n, indN(p0, ps, n)) : P (succN(n))

• Congruence rules: omitted

Example (addition). The term indN(−,−) lets us do recursion on natural numbers. We’d like to
define add : N → N → N, satisfying the (pattern matching) equations

add m 0 = m

add m succ(n) = succ(add m n)

We can do this using the term

add := λm.ind(m,λn.λa.succ(a))

which satisfies the desired pattern matching equations.

It’s a lot easier to implement functions with pattern matching, but it is actually equivalent1! Proof
assistants like Lean implement pattern matching by automatically translating it to a suitable use
of ind, both for N and for any other inductively-defined type.

Other inductive types. Some other inductive types, whose rules follow a similar pattern to those
for N, include:

1Or at least, can be equivalent, depending on the exact rules for pattern matching and for ind

Compiled By:

Mark Barbone, Dakota Bryan, Yunkai Zhang 6



Introduction to Type Theories Anja Petković Komel

• The unit type (1)

• The empty type (∅), with inductive principle ind∅ :
∏

(x:∅) P (x), and its non-dependent
version ex-falso := ind∅ : ∅ → A

• The dependent sum / coproduct Σ(x:A)B(x)

• Propositional Equality (=)

3 Dependent pairs

Given a type A and a type family x : A ⊢ B(x) type, we define a type whose elements are pairs
(a, b), with a : A and b : B(a). This type is written

∑
(x:A)B(x), and sometimes also called the

dependent sum type. It is equipped with a pairing function

pair :
∏
(x:A)

B(x) →
∑
(y:A)

B(y)

 .

A note on confusing terminology The non-dependent pair type, A × B, is often called the
product of A and B. However, we use “dependent product” to mean the type of dependent
functions, and “dependent sum” to mean the type of dependent pairs.

To give a concrete example of this, imagine a vector of length 2, we will have:

pair 2 (0, 0) : Σ(n:N)Vec N n

We can define the projections on pairs, and such projections would be the elimination rules of
dependent sums. Consider a type A and a type family B over A.

• The first projection map

pr1 :

∑
(x:A)

B(x)

 → A

is defined as pr1(x, y) := x.

• The second projection map

pr2 : Π(p:
∑

(x:A) B(x))B(pr1(p))

is defined as pr2(x, y) := y.

Note that, from the induction principle given in the textbook, such definitions can also be postulated
with induction. See page 14 of the textbook for further deductions.[1]

Compiled By:

Mark Barbone, Dakota Bryan, Yunkai Zhang 7



Introduction to Type Theories Anja Petković Komel

References

[1] Egbert Rijke. Introduction to Homotopy Type Theory. 2022. arXiv: 2212.11082 [math.LO].
url: https://arxiv.org/abs/2212.11082.

Compiled By:

Mark Barbone, Dakota Bryan, Yunkai Zhang 8


