
Introduction to Type Theories — Anja Petković Komel

Lecture 3 - June 25, 2025

The main topic of this lecture is to present the identity type.

In Egbert Rijke’s textbook [2], the identity type is presented as one-sided. Here, the identity type
will be presented as two-sided.

1 Another Definition of the Induction Principle for Natural Num-
bers

Last lecture, the inductive principle for natural numbers was defined via Pi types. A definition
which does not rely on Pi types is nicer from a proof-theoretic perspective because it allows for a
type theory with natural numbers, but without functions. See the alternative definition below.

Γ, n : N ⊢ P (n) type Γ ⊢ p0 : P (0) Γ, n : N, p : P (n) ⊢ pS(n, p) : P (succ(n)) Γ ⊢ k : N
Γ ⊢ indN(P, p0, pS , k) : P (k)

2 Two-Side Identity Type

We now turn our attention to the main subject of this lecture: the identity type, also called the
propositional equality type. This type is very important because we would like to state that objects
are equal, and prove these objects are equal. Thus, we must have propositional equality types (via
Curry-Howard). Although we already have an equality judgment, Γ ⊢ a

.
= b : A, this is not a type,

and having a type to represent equality is a lot more powerful: we’ll be able to do far more with it
inside the type theory. (Intuitively, the identity type will be able to prove all kinds of non-trivial
equalities, while judgmental equality will only be able to talk about simple syntactic rewrites.)

The rules are as follows.

1



Introduction to Type Theories Anja Petković Komel

• Formation rule: Given two elements with the same type (a : A and b : A), a =A b is a type.
Elements of this type (p : a =A b) describe “the ways that a, b can be equal” (i.e. proofs or
witnesses). It’s an empty type if a and b are different, and nonempty if they’re equal.

Γ ⊢ a : A Γ ⊢ b : A

Γ ⊢ a =A b type

A concrete example is,

⊢ 0 : N ⊢ addN(0, 0) : N
⊢ 0 =N addN(0, 0) type

• Introduction rule: given a single element a : A, this gives us a proof of reflexivity, that a
equals itself.

Γ ⊢ a : A

Γ ⊢ refla : a =A a

A concrete example is,

⊢ 0 : N
⊢ refl0 : 0 =A 0

This is slightly less restrictive than it seems at first, since we can always substitute a judg-
mentally equal thing for one of the a’s (using the element conversion rule), deriving the rule

Γ ⊢ a
.
= b : A

Γ ⊢ refla : a =A b.

• Elimination rule (J-rule): This rule is the induction principle, and defines how we can form
functions out of the identity type. In order to form these functions, we only need a term
(proof) for refl, because that is the only constructor of the identity type. This analogous to
the induction principle on N, where we need to handle the two constructors, 0 and successor.

Γ, x : A, y : A, p : x =A y ⊢ P (x, y, p) type

Γ ⊢ J :
(
Π(x:A)P (x, x, reflx)

)
→ Πa:AΠb:AΠq:a=AbP (a, b, q)

Like other induction principles, this rule is usually hidden in proof assistants which let you
do pattern matching and implement the rule under the hood.

A concrete example:

x : N, y : N, p : x =N y ⊢ x =N addN(0, y) type

⊢ J :
(
Π(x:N)x =N addN(0, x)

)
→ Π(x:N)Π(y:N)Π(q:x=Ny)x =N addN(0, y)

Compiled By:

Mark Barbone, Dakota Bryan, Yunkai Zhang 2



Introduction to Type Theories Anja Petković Komel

• Computation rule: The J-rule lets you write a function out of an identity type by only
considering reflx. This rule says that when you give this function refla, you get what you
expect.

Γ, x : A, y : A, p : x =A y ⊢ P (x, y, p) type Γ ⊢ d : Πx:AP (x, x, reflx) Γ ⊢ a : A

Γ ⊢ J(d, a, a, refla)
.
= d(a) : P (a, a, refla)

The d mentioned in this rule is actually referring to “diagonal”.

Diagonal A definition of the diagonal of a type is given at page 150 of [2]: a map δA : A →
A × A given by λx.(x, x), creating a dependent pair. Such definition sort of resonates with
what we did in the computation rule (but is not want we are doing exactly here).

Some general ideas behind the computation rule is that, if we apply the elimination rule in a
‘base case’ under the inductive principle, then we recover the given data, as hinted by [1].

As a reminder, what computation rules are essentially doing is revealing “what happens when
applying a function constructed via the elimination rule to an element constructed via
the introduction rule.” [1]

Example To give a concrete, though not very motivating, example, let’s define d :=
λx.reflx : Π(x:N)x =N add(x, 0). (Note that this is well-typed by the element conversion
rule, since the judgmental equality x : N ⊢ x

.
= add(x, 0) : N holds.) Now, as in the J

example above, we get J(d) : Πx:NΠy:NΠp:x=Ny x =N addN(y, 0). If we then apply it to n, n,
and refln for some natural number ⊢ n : N, we have the reduction

⊢ J(d, n, n, refln)
.
= d(n)

.
= refln : n =N addN(n, 0).

• Congruence rule:

Γ ⊢ a
.
= a′ : A Γ ⊢ b

.
= b′ : A

Γ ⊢ (a =A b)
.
= (a′ =A b′) type

For a concrete example that uses the congruence rule, we would like to prove the following:

Γ ⊢ a
.
= a′ : A Γ ⊢ p : a =A b

Γ ⊢ p : a′ =A b

This shows that if we have a proof (p : a =A b), and an a′ that is judgmentally equal to a,
the same proof, p, works for a′ and b. Below is the derivation:

Compiled By:

Mark Barbone, Dakota Bryan, Yunkai Zhang 3



Introduction to Type Theories Anja Petković Komel

Γ ⊢ a
.
= a′ : A

Γ ⊢ b : A

Γ ⊢ b
.
= b : A

refl of judgment eq

Γ ⊢ (a =A b)
.
= (a′ =A b) type

cong
Γ ⊢ p : a =A b

Γ ⊢ p : a′ =A b
elem conv

Now let’s turn to doing some proofs with equality.

Equality is symmetric: we’ll define a function

symmA : Πx:AΠy:A(x =A y) → (y =A x).

To do this using J directly, we’ll first need a type family:

⊢ P (x, y, p) := (y =A x) type

Now we can use J to define
symmA := JP (λx.reflx).

This is rather cumbersome, so we’ll use a pattern matching notation in the future:

symmA(x, x, reflx) := reflx.

Defining f(x, x, reflx) will be shorthand for defining f to use the J rule.

Equality is transitive:

concatA : Πx,y,z:A(x =A y) → (y =A z) → (x =A z)

concatA(x, x, z, reflx, p) := p

We could think of this as “concatenating” a proof connecting x to y and a proof connecting y to z.

Functions are congruences for equality:

apA,B : Πf :A→BΠx,y:A(x =A y) → (f(x) =B f(y))

apA,B(f, x, x, reflx) := reflf(x)

The name comes from the action on paths of the function f : it takes a path (proof of equality)
between x and y, to a path (proof of equality) between f(x) and f(y).

Compiled By:

Mark Barbone, Dakota Bryan, Yunkai Zhang 4



Introduction to Type Theories Anja Petković Komel

Transport Finally, if x = y, then you can turn elements of B(x) into elements of B(y):

trA,B : Πx,y:A(x =A y) → B(x) → B(y)

trA,B(x, x, reflx, b) := b

This is called transport, since we move the element b from type B(x) to B(y).

References

[1] Cecilia Flori and Tobias Fritz. Homotopy Type Theory: Univalent Foundations of Mathematics.
University of Waterloo Graduate Course Notes, Chapter 6. Spring 2014, Perimeter Institute
for Theoretical Physics. 2014. url: http://tobiasfritz.science/2014/topic6.pdf.

[2] Egbert Rijke. Introduction to Homotopy Type Theory. 2022. arXiv: 2212.11082 [math.LO].
url: https://arxiv.org/abs/2212.11082.

Compiled By:

Mark Barbone, Dakota Bryan, Yunkai Zhang 5


