
Introduction to Type Theories — Anja Petković Komel

Lecture 5 - June 26, 2025

1 Martin-Löf Type Theory Principles in Rocq

We continue from last lecture by looking at Rocq tactics and seeing what type theory they are
“hiding”.

Some Rocq syntax:

• Check x: Displays the type of x.

• About x: Similar to check, About displays the type of x but also tells you which arguments
are implicit.

• Print x: Displays what is defined, both the term and the type. If x is a defined proof,
Print x will display the full term that the proof compiled to. Recalling Curry-Howard, the
tactics in Rocq to build proofs are building a term of the type.

1.1 The Empty Type

True is the unit type and False is the empty type.

We can prove the ex falso principle which says that if we can derive the empty type, anything can
be proven.

Definition exfalso_example : forall A : Type, False -> A.

Proof.

intros A p.

exfalso.

exact p.

Defined.
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Some Rocq tactics relating to the empty type are:

• exfalso:

exfalso introduces False as the goal, hinging on the fact that if we can derive false we can
prove anything. In this case, after intros, we have a proof of False in our context as p.

• discriminate:

This tactic works if you have something clearly false in your context. If you do, it applies
exfalso for you and proves the goal. Otherwise, it fails.

1.2 Variable Conversion

Consider the proof below:

(* variable conversion *)

Definition variable_conv : forall n : nat, 0 + n = n -> n = n.

Proof.

intros n p.

(* point 1 *)

exact p.

Defined.

At point 1, we have a proof, p, that 0 + n = n. When we invoke exact p, Rocq uses variable
conversion to convert the type of the variable p in our context to the type n = n in the goal,
and the proof is defined. The variable conversion is 0 + n

.
= 0. Instead of this, we could invoke

simpl in p then exact p, but then Rocq is not using the variable conversion rule.

Another example of Rocq implicitly doing variable conversion is the user specifying a different type
than is defined. If we have banana 0 : 0 + 0 = 0 + 0, then we Check banana 0 : 0 = 0, Rocq
will do variable conversion and display banana 0 : 0 = 0.

1.3 Transport

Recall the transport rule, shown below.

trA,B : Πx,y:A(x =A y) → B(x) → B(y)

Now, let’s consider the type family of the Vec which will be used to show examples of how Rocq
can use the transport rule implicitly and explicitly.
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Inductive Vec (A : Type) : nat -> Type :=

nil : Vec A 0

| cons : A -> forall n : nat, Vec A n -> Vec A (S n).

Based on Vec, we want to define some basic operations like concat and rev.

1.3.1 Concat

We define concat below.

Definition concat {A : Type} {n m : nat}:

Vec A n -> Vec A m -> Vec A (n + m).

Proof.

intros v u.

induction v.

(* point 1 *)

- exact u.

(* point 2 *)

- exact (cons A a (n+m) IHv).

Defined.

At point 1, we have u : Vec A m and must construct a term for Vec A (0 + m). Relating this to
the definition of the transport rule above, B(x) is Vec A m, and we are trying to construct B(y)
as Vec A (0 + m). When exact u is invoked, Rocq implicitly uses the transport rule, and can
automatically infer the other required premise: that m = 0 + m.

1.3.2 Rev

Following a similar approach, we attempt to define rev as well:

Definition rev {A : Type} {n m : nat} : Vec A n -> Vec A n.

Proof.

intros v.

destruct v.

- exact (nil A).

- exact (concat IHv (cons A a 0 (nil A))).

Defined.

But here, Rocq cannot implicitly apply the transport rule. We can observe that the concat produces
type Vec A (n+1), whereas our desired object type is actually Vec A (S n).
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Whilst they are equal as natural numbers, such two representations are not definitionally equal,
so Rocq cannot infer them as such for the transport rule. These are different syntactic forms that
requires a proof to establish their actual equality. Therefore, we use the built-in explicit transport
rule in rocq, eq_rect_r, shown below.

About eq_rect_r.

(* eq_rect_r : forall (A : Type) (x : A) (P : A -> Type),

P x -> forall y : A, y = x -> P y *)

The order of arguments is different than our definition above, but they are the same.

We can instantiate this with the type families from Vec and provide a proof that the terms are
equal to use the transport rule explicitly.

Lemma foo : forall n : nat, S n = n + 1.

eq_rect_r (fun d => Vec A d)

(concat IHv (cons A a 0 (nil A)))

(foo n)

In this way, we can:

1. Start with a term of type Vec A (n+1)

2. Have a proof that S n = n + 1

3. Then transport will give us a term of type Vec A (S n) that satisfies our type requirement.

2 Universes

As of yet, our types are types and our terms are terms, and never the twain shall meet. It would
be convenient to allow (some) types to be used as terms, and for this purpose we’ll introduce the
notion of a universe: a “type of types”; that is, a type whose terms can themselves be interpreted
as types.

The definition of universe has been refined over time, and in lecture, Prof. Komel presented a
very modern definition. For added context, in these notes we will present it somewhat differently,
getting to the definition from lecture by iterating on an initial attempted definition.
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Attempt 1. We define a type U whose terms are all the types:

Γ ⊢ U type

Γ ⊢ A : U
A type

Γ ⊢ A type

Γ ⊢ A : U

This setup does not work. Philosophically, it seems weird to have U be an element of itself –

⊢ U type

⊢ U : U

– and mathematically, this shows up as Girard’s paradox, a type-theoretic version of Russell’s
paradox. Perforce, there can’t be a set of all sets, nor a type of all types.

Attempt 2. As U can’t be a type of all types, we go to the next best thing: a type of most of the
types that we care about. Concretely, we’ll ask it to contain 0, 1, N, Π types, and identity types.

Γ ⊢ U type

Γ ⊢ A : U
A type Γ ⊢ 0 : U Γ ⊢ 1 : U Γ ⊢ N : U

Γ ⊢ A : U Γ, x : A ⊢ B(x) : U
Γ ⊢ Π(x:A)B(x) : U

Γ ⊢ A : U Γ ⊢ x : A Γ ⊢ y : A

Γ ⊢ x =A y : U

This version (“Russell-style”) no longer has paradoxes! However, there are reasons why it is still
unsatisfactory:

• These rules force the elements of U to be types themselves. However, all we really need is
for each element of U to uniquely determine a type, and this would give more flexibility in
defining our type system.

• Before adding these rules, we had different syntactic classes of terms and of types. With
Russell-style universes, the two are merged, which makes metatheory trickier.

• Philosophically, it seems odd to have abandoned our formula of introduction, elimination,
and computation rules.

Attempt 3 (final version). We tweak the above by making the terms of U their own thing,
which get coerced to types via a type family T . We call the elements of U codes for types, to
distinguish them from the types themselves. In another way, we can understand T as a tool to
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transform a “encoding of type / type code” into a type.

Γ ⊢ U type

Γ ⊢ A : U
Γ ⊢ T (A) type Γ ⊢ 0̌ : U

Γ ⊢ T (0̌)
.
= 0 type

Γ ⊢ 1̌ : U
Γ ⊢ T (1̌)

.
= 1 type

Γ ⊢ A : U Γ, x : T (A) ⊢ B(x) : U
Γ ⊢ Π̌(A,B) : U

Γ ⊢ T (Π̌(A,B))
.
= Π(x:T (A))T (B(x)) type

Γ ⊢ A : U Γ ⊢ x : T (A) Γ ⊢ y : T (A)

Γ ⊢ ěq(A, x, y) : U
Γ ⊢ T (ěq(A, x, y))

.
= (x =T (A) y) type

The formation rule gives us U type, and the elimination rule gives us T (A) type for A : U . For ease
of notation, I’ve written the introduction rules and computation rules together, just as a shorthand.

Aside. T (·) is often called El(·) in other sources.

This version (universe à la Tarski) supports all the same uses as our previous version, while fixing
the issues we had, at the cost of being more verbose. However, we can recover exactly the syntax of
the previous attempt using the notational convention that T is implicit, and that 0 is overloaded to
mean both 0 and 0̌, etc. Today, even when a type system is presented using Russell-style universes,
its metatheory may be studied using a corresponding Tarski-style presentation.

2.1 A whole hierarchy of universes

Just one universe U can only contain some of the types, so type theories will typically include many
universes. A common choice is a countable hierarchy U0, U1, U2, . . . , where each Uk has codes for
each of the preceding Ui’s, i < k.

However, rather than fix any particular hierarchy of universes, we’ll simply assume that there are
“enough” universes, in a particular sense:

Assumption 2.1 (Rijke, 6.2.1, [2]). For any finite collection of types-in-context

Γ1 ⊢ A1 type Γ2 ⊢ A2 type . . . Γn ⊢ An type,

there exists a universe (U , T (·)) with codes

Γi ⊢ Ǎi : U Γi ⊢ T (Ǎi)
.
= Ai type

for each i = 1, . . . , i = n.

Aside. This assumption is closely related to Grothendieck’s axiom of universes (SGA4) from a
set-theoretic context. The universes in Rocq, Agda, and Lean all satisfy this assumption.

As instances of this axiom, we get the following constructions on universes.

Compiled By:

Mark Barbone, Dakota Bryan, Yunkai Zhang 6



Introduction to Type Theories Anja Petković Komel

• Successor universe. Let U be a universe. We have types-in-context

A : U ⊢ T (A) type ⊢ U type.

So there is a universe, which we’ll call U+, containing (codes for) all the types in U , as well
as U itself.

To give a sense of this universe, consider the following type judgements in the successor
universe:

⊢ Ǔ : U+ ⊢ T +(Ǔ) .
= U type

X : U ⊢ Ť (X) : U+ X : U ⊢ T +(Ť (X))
.
= T (X) type

By applying this repeatedly, we can consider (U+)+, etc.

• Join of universes. The join of two universes U and V is the universe U ⊔ V, by applying the
postulate that there are always enough universes on the following two type families:

X : U ⊢ TU (X) type Y : V ⊢ TV(Y ) type.

An intuitive way to view the join of universes is to imagine it as ”lifting the levels of universes”.

3 Bonus: MLTT vs CIC

In mainstream theorem provers, Agda is built on MLTT whilst Rocq and Lean is using CIC
(Calculus of Inductive Constructions).

Prop One of the main differences between them is about the Prop. Rocq and Lean treat Prop as
an impredicative sort, and they define their sorts (universes) as follows[1]:

S
def
= {Prop} ∪

⋃
i∈N

{Typei}

Prop is special, in that CIC has special rules for dependent function types in Prop.

Γ ⊢ A type Γ, x : A ⊢ B(x) : Prop

Γ ⊢ Πx:AB(x) : Prop

Γ ⊢ A : Typei Γ, x : A ⊢ B(x) : Typei

Γ ⊢ Πx:AB(x) : Typei

Constructing
∏

(x:A)B(x) : Typei requires that A : Typei, but Prop has no such restrictions: it
includes dependent products out of every ⊢ A type. This property is called being impredicative.
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Eliminating Existential Quantifiers There are three kinds of existential quantifiers in Rocq:

Print ex.

Print sig.

Print sigT.

They behave differently:

• ex: Cannot only eliminated with destruct when proving something in Prop, maps into Prop.

• sig: Can always be eliminated with destruct, maps into Prop.

• sigT: Can always be eliminated with destruct, maps into Type. It is the usual Σ-type like
in MLTT.

You can refer to the fall_ex and fall_ex_ty examples in the code handout. Sometimes a change
of universe level could resolve lots of seemingly tricky issues.
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