
System Design and Innovation:
A Garbage Collection Case Study

Collaborators
Steve Blackburn, Google

Wenyu Zhao, ANU

Speaker
Kathryn S. McKinley, Google

Garbage Collection Design through the lens of

✓ Breaking the Time & Space Tradeoff with Memory Performance
Immix: Hierarchy of Lines and Blocks with judicious copying

✓ Breaking Low Latency & GC Pause Time Tradeoff for Parallel Performance
LXR: Reference Counting with even less copying in pauses, concurrent tracing

✓ Abstraction for Innovation
MMTk & Work Packets

Benchmarks, Performance Methodologies & More Methodologies
Not today, but critical

2

Why should you care about
Garbage Collection (GC)?

Programming Languages People Use
Rely on Garbage Collection (GC)

4

C++
C

PHP

Innovation in applications, programming languages &
hardware

5

Innovation is happening at all
the layers of the stack

Parallel Processing &
Memory Systems 

Hardware  
Instruction Set Architecture 

Compilers &  
Runtimes 

Applications &  
Programming Languages 

Garbage Collection Helps Glue it All Together

6

Parallel Processing &
Memory Systems 

Hardware  
Instruction Set Architecture 

Compilers &  
Runtimes 

Applications &  
Programming Languages 

Innovation is happening at all
the layers of the stack

Compilers & Runtimes with
Garbage Collection
glue the layers together,
dictating correctness &
performance

Parallel Hardware has Deep Memory Systems

7

≤ 4 MB 8 MB – 1 GB

SSD
NVM

L1/L2

caches

DRAM
w/ w/o
NUMA

4 GB - 32 TB

L3 caches

L3 caches
L1/L2

caches

L1/L2
caches

L1/L2
caches

CPUs

Latency in cycles 3 20 40 150 400

History Foundational GC Heap Organizations

8

Mark-Compact
Styger
1967

Mark-Sweep
McCarthy

1960

Semi-Space
Fenichel & Yochelson

1969

Mark-Region
Blackburn & McKinley

2008

P!NK

So

What

GC Fundamentals

Allocation Identification Reclamation

Sweep-to-Free

Compact

Evacuate

Sweep-to-Region

Bump Allocation

Free List

Reference Counting
(explicit)

3 1

Tracing
(implicit) Roots

Roots

Mark Sweep

Allocation Identification Reclamation

Sweep-to-FreeTracing
(implicit)

Free List

● Allocation produces poor locality in multiple size-based free lists.
● Some fragmentation memory overhead
● Low computational overhead due to super fast tracing & non moving reclamation

Mark Compact

Allocation Identification Reclamation

CompactTracing
(implicit)

●

Bump Pointer

● Super fast allocation with good locality
● No fragmentation
● Tracing is fast
● Multipass algorithm to compacting adds high computational overhead

Semi Space

Allocation Identification Reclamation

EvacuateTracing
(implicit)

● Super fast allocation with good locality
● No fragmentation, but doubles the memory overhead because all objects could

survive!
● Tracing and evacuation (copying) adds computational overhead to copy objects

Bump Pointer

Mark-Region

Allocation Identification Reclamation

Sweep-to-RegionTracing
(implicit)

● Super fast allocation with good locality
● Low fragmentation
● Tracing with occasional copying yields

low computational and low memory overheads

Bump Pointer

14

Small Regions

Large Regions

✗ Constrained object sizes

✓ More contiguous allocation ✗ Fragmentation (false marking)

Lines & BlocksN pages approx 1 cache line

✓ Less fragmentation
 Objects span lines

✓ Fast common case
 Lines marked with objects

✗ Increased metadata o/h

✗ Fragmentation can’t fill blocks

 TLB locality, cache locality  Block > 4 X max object size
Free FreeRecyclable Recyclable

Mark-Region Immix: Lines and Blocks

Blackburn & McKinley Immix 15

• Identify source and target blocks
• Evacuate objects in source blocks

– Allocate into target blocks
• Opportunistic

– Leave in place if no space, or object pinned

• Opportunistically evacuate fragmented blocks
– Lightweight, uses same allocation mechanism

Opportunistic Defragmentation

Mark-Region Immix Collection
Broke the Space Time Tradeoff

Stop-the-World Collectors Pause all the Threads

17

Stop-the-world (STW) GC threads

Ap
pl

ic
at

io
n

th
re

ad
s

Memory System & Computation Performance Tradeoffs

18

Semi-Space
Space

inefficient

Mark-Compact
expensive multi-pass

Actual data, taken from geomean of DaCapo, jvm98, and jbb2000 on 2.4GHz Core 2 Duo

Mark-Sweep
Poor locality

Time

Space: Heap Size

Performance Tradeoffs

19

✓
Mutator

Good
locality

Minimum Heap

✓
Space

efficient

✓
Simple,

very fast
collection

Garbage Collection Total Performance

✓
Excellent

performance

Actual data, taken from geomean of DaCapo, jvm98, and jbb2000 on 2.4GHz Core 2 Duo

Space: Heap Size

Time

Impact of Immix

LXR (PLDI 2022, OOPSLA 2025)

Exploits Immix to avoid expensive copying; a novel approach to achieving high throughput
and low latency, significantly outperforming the state-of-the-art (11% throughput
advantage over G1).

Iso (PLDI 2025)
Exploits Immix’s pinning to solve 30-year old problem of how to do thread-local

garbage collection without exploitable immutability (pin public objects, move private).

CRuby, Julia (ISMM 2025)
Exploit Immix’s pinning to allow legacy languages with low-overhead C interfaces to

have a copying GC for the first time. C-reachable objects are pinned.

20

Generational GC [1983, 1984]
Bump Pointer Nursery + Any Heap Organization for the Old Space

21

● Repeatedly fill the nursery, copy out, when old space is full
perform a whole heap collection

Bump Pointer Nursery Old Space: Copying

Roots

Generational GC [1983, 1984]
Bump Pointer Nursery + Any Heap Organization for the Old Space

22

● Repeatedly fill the nursery, copy out, when old space is full
perform a whole heap collection

Bump Pointer Nursery Old Space: Copying

Roots Roots

Generational GC [1983, 1984]
Bump Pointer Nursery + Any Heap Organization for the Old Space

23

● Repeatedly fill the nursery, copy out, when old space is full
perform a whole heap collection

Bump Pointer Nursery Old Space: Copying

Roots Roots

Generational GC [1983, 1984]
Bump Pointer Nursery + Any Heap Organization for the Old Space

24

● Repeatedly fill the nursery, copy out, when old space is full
perform a whole heap collection

Bump Pointer Nursery Old Space: Copying

Roots

Generational GC [1983, 1984]
Bump Pointer Nursery + Any Heap Organization for the Old Space

25

Bump Pointer Nursery Old Space: Copying

Roots Roots

● Requires a write barrier to independent collect the nursery
If source pointer in old space, and target is in the nursery
then store the source pointer in a “cross generation pointer
buffer”

G1: Popular Default Open JDK Production GC [2004]
Garbage First:
Generational GC Stop-the-World, with Free List for the Old Space

26

Evacuate

Bump Pointer
Nursery

Old Space: Free List

On to Concurrent & Parallel GC!

Parallelism

28

Application threads

Parallelism is imperfect

29

Application threads

Stop-the-World

30
Periodic lengthy pauses, adds latency and queuing delay

Stop-the-world (STW) GC threads

Ap
pl

ic
at

io
n

th
re

ad
s

Add Concurrency to Make Pauses Short!?
Shenandoah [2016], C4 [2011] & ZGC [2017]
Short pauses with tracing, but expensive concurrent copying barriers

31

ST
W

 G
C

th
re

ad
s

Concurrent GC threads

Ap
pl

ic
at

io
n

th
re

ad
s

Expensive read & write barriers
Cost was not well measured or recognized until 2022!

32

GC Pauses Lusearch
DaCapo dev-Chopin (github 202204) using our fork of
OpenJDK JDK 11.0.11+6 +35, running on a 16/32
AMD Ryzen 5950X with 64GB DDR4-3200 memory.

512K search queries running
over Apache lucene 8.5.2., with
a heap 1.3X G1’s minimum.

Shenandoah

33

Latency Lusearch
DaCapo dev-Chopin (github 202204) using our fork of
OpenJDK JDK 11.0.11+6 +35, running on a 16/32
AMD Ryzen 5950X with 64GB DDR4-3200 memory.

512K search queries running
over Apache lucene 8.5.2., with
a heap 1.3X G1’s minimum.

Shenandoah

34

DaCapo dev-Chopin (github 202204) using our fork of
OpenJDK JDK 11.0.11+6 +35, running on a 16/32
AMD Ryzen 5950X with 64GB DDR4-3200 memory.

35

DaCapo dev-Chopin (github 202204) using our fork of
OpenJDK JDK 11.0.11+6 +35, running on a 16/32
AMD Ryzen 5950X with 64GB DDR4-3200 memory.

36

High throughput with
Immediacy with reference counting in pauses
Avoiding copying no concurrent copying

Low latency
Short frequent pauses do reference counting & copying
Snapshot-At-The-Beginning (SATB) fast write barrier (no read barrier)
Concurrent Cycle Tracing since reference counting cannot reclaim cycles

✓

✓

✓

✓

✓

LXR Design Insights

LXR

37

STW Pause performs reference counting increments and some decrements
 defragments heap with small amounts of copying
Not in Pause
 Lazy decrements concurrent decrements in application slack
 Mature sweeping when lazy decrements & trace completes, reclaim free memory
 SATB Write Barrier captures reference counts and write during tracing
 SATB Trace reclaims cycles

Methodology

OpenJDK 11 LTS at time of development

DaCapo Chopin 2022 dev snapshot

4 latency-sensitive workloads
All 17 workloads report throughput

Three highly-tuned production collectors
G1, Shenandoah, ZGC

Three hardware platforms

AMD Zen 3 5950X 16/32 3.4 GHz 64 MB LLC, 64 GB DDR4
AMD Zen 2 3900X 12/24 3.8 GHz 64 MB LLC, 64 GB DDR4
Intel Coffee Lake i9-9900K 8/16 4.6 GHz 16 MB LLC, 128 GB DDR 4

38

+

39

Latency Lusearch
DaCapo dev-Chopin (github 202111) using our fork of
OpenJDK JDK 11.0.11+6 +35, running on a 12/24
AMD Ryzen 3900X with 64GB DDR4-2133 memory.

512K search queries running
over Apache lucene 8.5.2., with
a heap 1.3X G1’s minimum.

40

YCSB workloads running over
Apache cassandra 3.11.10.,
with a heap 1.3X G1’s
minimum.

DaCapo dev-Chopin (github 202204) using our fork of
OpenJDK JDK 11.0.11+6 +35, running on a 16/32
AMD Ryzen 5950X with 64GB DDR4-3200 memory.

TCP-C-like workload running
over Apache derby 10.14.2.0.,
with a heap 1.3X G1’s
minimum.

Tomcat’s sample web
application workload running
over Apache tomcat 9.0.37.,
with a heap 1.3X G1’s
minimum.

Cassandra H2 Tomcat

Latency

41

DaCapo dev-Chopin (github 202204) using our fork of
OpenJDK JDK 11.0.11+6 +35, running on a 16/32
AMD Ryzen 5950X with 64GB DDR4-3200 memory.

latency-sensitive
workloads

Abstraction for Innovation

Industry JVM Collectors 2004-today

43

Shenandoah
[Flood et al 2016]

Tracing
Region-based
Evacuation only
Concurrent evacuation

C4
[Tene et al 2011]

Tracing
Region-based
Evacuation only
Concurrent evacuation

G1
[Detlefs et al 2004]

Tracing
Region-based
Evacuation only
STW evacuation

ZGC
[Liden et al 2017]

Tracing
Region-based
Evacuation only
Concurrent evacuation

low-pause concurrent evacuating collectors

Industry JVM Collectors 2004-today

44

Shenandoah
[Flood et al 2016]

Tracing
Region-based
Evacuation only
Concurrent evacuation

C4
[Tene et al 2011]

Tracing
Region-based
Evacuation only
Concurrent evacuation

G1
[Detlefs et al 2004]

Tracing
Region-based
Evacuation only
STW evacuation

ZGC
[Liden et al 2017]

Tracing
Region-based
Evacuation only
Concurrent evacuation

reserved region

~53K LOC (25.2%)

~32K LOC (15.1%)

~26K LOC (12.2%)

~40K LOC (18.7%)

~38K LOC (17.6%)

Total ~214K LOC

~1K LOC (0.6%)

~5K LOC (2.6%)

~17K LOC (8%)

Zero code reuse!

Generational ZGC

✘ Low Code Reuse

✘ Low Maintainability

✘ Low Performance

https://symbolonly.com/cross-symbol.html
https://symbolonly.com/cross-symbol.html
https://symbolonly.com/cross-symbol.html

25 Years of Innovation from Modular, Extensible Design
2000 Steve refactored & built new Jikes RVM collectors, producing JMTk

● Pretenuring for Java, S. M. Blackburn, S. Singhai, M. Hertz, K. S. McKinley, and J. E. B. Moss, Proceedings of the ACM 2001 SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications. (OOPSLA), Tampa Bay FL, October 2001.

● Beltway: Getting Around Garbage Collection Gridlock, S. M. Blackburn, R. Jones, K. S. McKinley, and J. E. B. Moss, Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Berlin, Germany, June 2002,.

● In or Out? Putting Write Barriers in Their Place, S. M. Blackburn and K. S. McKinley, International Symposium on Memory Management (ISMM), Berlin,
Germany, June 2002.

● Older-first Garbage Collection in Practice: Evaluation in a Java Virtual Machine, D. Stefanovic, M. Hertz, S. M. Blackburn, K. S. McKinley, and J. E. B. Moss,
Memory System Performance, Berlin, Germany, June 2002.

● Ulterior Reference Counting: Fast Garbage Collection without the Wait, S. M. Blackburn and K. S. McKinley, Proceedings of the ACM 2003 SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA), Anaheim, CA, October 2003.

2004 Steve, Perry, & I publish MMTK v1, 2004-2015, 100+ papers using Jikes + MMTK

● Oil and Water? High Performance Garbage Collection in Java with MMTk, S. M. Blackburn, P. Cheng, and K. S. McKinley, 26th International Conference on
Software Engineering, pp. 137-146, Edinburgh, Scotland, May 2004. Citations from Google Scholar: 333

● Myths and Realities: The Performance Impact of Garbage Collection, S. M. Blackburn, P. Cheng, and K. S. McKinley, ACM SIGMETRICS Conference on
Measurement & Modeling Computer Systems, pp. 25-36, New York, NY, June 2004. Test of Time Award (June, 2014). Citations from Google Scholar: 265

 2017-2025 Steve et al. (not me ;-) design and deliver MMTk in Rust for Jikes & Open JDK

● Rust as a language for high performance GC implementation, Lin, Blackburn, Hosking, Norrish, in Proceedings of the Sixteenth ACM SIGPLAN International
Symposium on Memory Management, ISMM '16, Santa Barbara, CA, June 13, 2016.

● Reworking Memory Management in CRuby: A Practitioner Report, Wang, Blackburn, Zhu, Valentine-House, in ISMM, 2025.
● Reconsidering Garbage Collection in Julia: A Practitioner Report, de Souza Amorim, Lin, Blackburn, Netto, Baraldi, Daly, Hosking, Pamnany, Smith, in ISMM 2025,

45

https://www.cs.utexas.edu/~mckinley/papers/urc-oopsla-2003.pdf
https://www.cs.utexas.edu/~mckinley/papers/mmtk-icse-2004.pdf
https://www.cs.utexas.edu/~mckinley/papers/mmtk-sigmetrics-2004.pdf

46

Work Packets
More Abstraction for
More Parallelism &

Even Better Software Engineering

47

Sequentially-ordered
Phases

Basic GC Phases

Measured GC Phases

48

Tracing
Reset Mark Table

Scan Roots

✘ Phases -- low parallelism and poor load balancing

✘ OpenJDK: Monolithic & Low Code Reuse

(Immix GC with Phases)

https://symbolonly.com/cross-symbol.html
https://symbolonly.com/cross-symbol.html

Work Items and Kernels

49

Work Items
● A smallest unit of work

○ A heap object to trace
○ A mutator stack to scan

● Work item stealing
○ Maximize parallelism

Kernels
● Small functions to process a list of same-typed work items

Work Item: Object obj

Kernel:

void mark_objects(Object objects[]) {
 for (Object obj : objects) {
 if (attempt_mark(obj)) {
 scan_object(obj);
 }
 }
}

● Highly concentrated
○ Captures hot loops only
○ Better Locality

● Highly generic
○ Better code reuse
○ Easy to optimize, understand, & prove correct

Work Packet = < WorkItem[] × Kernel >

Immix with Phases

50

Immix with
Work Packets & Dependencies

Work BucketsSequentially-ordered
Phases

Scheduling

51

Work Packet Dependencies
● e.g. Marking requires a properly initialized mark table

○ Marking cannot start before mark table zeroing is finished

Work Buckets
● A set of packets with same dependencies
● A dependency graph over buckets

Work Buckets

Dependency-based scheduling
● A set of algorithm agnostic GC workers
● Workers pull work packets to execute

○ Update bucket status when necessary
● Performs both packet and item stealing

52

Evaluation

Code Reuse

53

Most components are reusable (across 10 GCs)
● Algorithm agnostic scheduler
● Common work packets (28 / 49)

○ Root scanning
○ Marking & evacuation
○ Mark table zeroing
○ Sweeping
○ Stop/Resume mutators
○ ...

● GCs only need to declare their packets and dependencies
● Analysis and instrumentation code (Huang et al. 2023)

LOC

LXR 3.8K (8.6%)

Immix 0.5K (1.1%)

10 GCs Total 45.1K (100%)

GC Pause Time

54

0.93

0.94

Lessons for Parallel Programming

● Programming model transferable to other parallel computation systems
○ A generic abstraction: Work packets and kernels

■ Elegantly handle multiple different types of work with dependencies
○ Two-level scheduling, generalizes work stealing

■ Efficient work stealing with low overhead
○ Reusable and user-friendly analysis and evaluation tools

55

25 Years of Garbage Collection Innovation

Breaking the Time & Space Tradeoff with Memory Performance
Immix: Hierarchy of Lines and Blocks with judicious copying

Breaking Low Latency & GC Pause Time Tradeoff for Parallel Performance
LXR: Reference Counting with even less copying in pauses, concurrent tracing

Abstraction for Innovation
MMTk & Work Packets

Benchmarks, Performance Methodologies & More Methodologies
A research journey

56

Thank you!

Mark-Sweep [McCarthy 1960]

Free-list + trace + sweep-to-free

Mark-Compact [Styger 1967]

Bump allocate + trace + compact

● Super fast allocation with good locality
● No fragmentation
● Tracing and compacting adds high multipass

computational overhead with low memory overhead

GC Algorithms

● Allocation produces poor locality in multiple size-based
free lists.

● Some fragmentation
● Low computational overhead due to super fast tracing &

reclamation, as objects do not move

Semi-Space [Cheney 1970]

Bump allocate + trace + evacuate

● Super fast allocation with good locality
● No fragmentation
● Tracing and evacuation adds computation & lots of

memory overhead by moving all the objects

Mark-Region
Bump allocate + trace + sweep-to-region

● Super fast allocation with good locality
● Low fragmentation
● Tracing with occasional copying yields

low computational and low memory overheads

GC Algorithms

Mark-Compact [Styger 1967]

Bump allocate + trace + compact

● Super fast allocation with good locality
● No fragmentation
● Tracing and compacting adds high multipass

computational overhead with low memory overhead

