

Introduction to Category Theory - Paige Randall North

Lecture 3 - July 2, 2025

1 Products

Definition 1.1 (Product). For any $X, Y \in ob C$, the product of A, B consists of

- 1. an object $A \times B \in \mathsf{ob} \ \mathcal{C}$
- 2. a pair of maps $\pi_A : A \times B \longrightarrow A$ and $\pi_B : A \times B \longrightarrow B$

such that for any $Z \in \mathsf{ob} \ C$ and maps \mathfrak{Z}_A , \mathfrak{Z}_B as in the diagram below, there exists a unique map $u_Z : Z \longrightarrow A \times B$ making the diagram commute.

Example 1.1. Consider the following categories and their product elements.

- In *Set*, products are the cartesian products $A \times B \coloneqq \{(a, b) \mid a \in A, b \in B\}$, the π functions are given by $\pi_A \coloneqq \lambda(a, b).a \ \pi_B \coloneqq \lambda(a, b).b$ and $U_Z \coloneqq \lambda z.(\mathfrak{z}_A z, \mathfrak{z}_B z)$
- In $\mathcal{P}rop$, products are conjunctions, where $P, Q \vdash P \land Q$ and projections exist because $P \land Q \rightarrow P$ and $P \land Q \rightarrow Q$.

Exercise 1.1. Show that the product $A \times B$ of $A, B \in \mathsf{ob} \ \mathcal{C}$ is unique up to unique isomorphism.

Definition 1.2 (Product (Alternative)). Consider $A, B \in \mathsf{ob} C$. Define $C_{A,B}$ to have objects of the form:

(this is called a "span") and maps given by:

Where the map f takes spans "rooted" at A and B to spans rooted at A and B. Define the product of $A, B \in \mathsf{ob} C$, written $A \times B$, to refer to the terminal object in $C_{A,B}$.

Exercise 1.2. Show that $C_{A,B}$ definition forms a category and that the terminal object of this category is equivalent to the original definition of a product.

Hint:

- 1. Identities are given as above when Y is Z and f is id_Z .
- 2. Composition is inherited from $f \circ g$ in C in the following:

1.1 More alternative definitions

This subsection introduces more definitions of products and terminal objects in a style that is commonly used by category theorists when carrying out computations.

Definition 1.3 (Product (Alternative)). Consider $A, B \in \text{ob } C$. The product of A, B is an object $A \times B \in \text{ob } C$ with the property $\text{hom}_C(Z, A \times B) \cong \text{hom}_C(Z, A) \times \text{hom}_C(\overline{Z}, \overline{B})$ natural¹ in Z.

Note: The right-hand-side \times is in *Set* specifically, while the left-hand-side \times indicates the product in *C* generally.

Note: This reformulates the product as a statement about related structures of maps.

Exercise 1.3. Show that this definition is, in fact, equivalent to one of the previous two definitions. *Hint:* Consider what happens for these definitions when taking the homset of maps from an object to itself.

Definition 1.4 (Alternative Terminal Object Using hom). The terminal object of C is an object T such that hom $(Z,T) \cong \{T\}$.

2 Coproducts

Definition 2.1 (Coproduct). For any $X, Y \in \mathsf{ob} \ \mathcal{C}$, the coproduct of A, B consists of

- 1. an object A + B
- 2. a pair of maps $\iota_A : A \to A + B$ and $\iota_B : B \to A + B$

such that for any $Z \in$ and maps z_A, z_B as in the diagram below, there exists a unique map $u_Z : A + B \longrightarrow Z$ making the diagram commute.

Example 2.1. Consider the following examples.

- Set: the coproduct is defined as the disjoint union $A \uplus B$.
- \mathcal{P} cop: the coproduct is defined as the disjunction $P \lor Q$. Thus we can say that conjunction and disjunction are *dual*.

¹Naturality will be defined later on, the condition is included here to have a correct definition.

3 The syntactic category of the simply-typed λ -calculus

Definition 3.1. For a simply-typed λ -calculus \mathbb{T} , define the syntactic category $\mathcal{C}(\mathbb{T})$ by

- objects: types
- maps: derivable judgments, $x: S \vdash t: T$, quotiented by α -equivalence
- identity: $x : S \vdash x : S$
- composition: $x: S \vdash t: T$ and $y: T \vdash u: U$ derives $x: S \vdash u[t/y]: U$.

Exercise 3.1. Show that the unitality and associativity conditions hold for the above definition.

3.1 Products in $ST\lambda C$

Formation

$$\begin{array}{c|c} A \ type & B \ type \\ \hline A \times B \ type \end{array}$$

Introduction (or consider the case with $z : Z \leadsto \Gamma$)

$$\frac{z:Z \vdash a:A}{z:Z \vdash (a,b):A \times B}$$

Elimination

$$\frac{z: Z \vdash p: A \times B}{z: Z \vdash \pi_A p: A}$$

$$\frac{z: Z \vdash p: A \times B}{z: Z \vdash \pi_B p: B}$$

What is u_Z now? It is the introduction rule. The β and η rules say the triangles commute uniquely with unique u_Z .

