

Introduction to Category Theory - Paige Randall North

Lecture 4 - July 3, 2025

1 Functors

Definition 1.1. A functor $F : \mathcal{C} \to \mathcal{D}$ consists of the following:

- a function ob $F : \mathsf{ob} \ \mathcal{C} \to \mathsf{ob} \ \mathcal{D}$
- functions $F_{X,Y}$: $\hom_{\mathcal{C}}(X,Y) \to \hom_{\mathcal{D}}(FX,FY)$ for all $X,Y \in \mathcal{C}$

such that 1

- $F_{X,X}$ id_X = id_{FX} for all X \in ob C
- $F_{X,Z}(g \circ f) = F_{Y,Z}(g) \circ F_{X,Y}(f)$ for any $X \xrightarrow{f} Y \xrightarrow{g} Z$ in C

Exercise 1.1. Functors preserve isomorphisms. Namely, for any functor $F : C \to \mathcal{D}$, and isomorphism $f : X \cong Y$ in $C, Ff : FX \to FY$ is also an isomorphism.

$$FX \xrightarrow{Ff} FY$$

$$\overleftarrow{Ff^{-1}} FY$$

Example 1.1 (Identity functor). Define the identity functor on C as follows:

- ob $\operatorname{Id}_{\mathcal{C}}$: ob $\mathcal{C} \to$ ob \mathcal{C} ob $\mathcal{C} \coloneqq \lambda x.x$
- $(\mathrm{Id}_{\mathcal{C}})_{X,Y} : \hom_{\mathcal{C}}(X,Y) \to \hom_{\mathcal{C}}(X,Y)$ $(\mathrm{Id}_{\mathcal{C}})_{X,Y} := \lambda f.f$

¹Notation: We write FX and Ff for $(\mathsf{ob}\ F)(X)$ and $F_{X,Y}(f)$, respectively.

Example 1.2. (Functor composition) Given three categories, \mathcal{C}, \mathcal{D} and \mathcal{E} , and two functors $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{E}$, consider the functor composition $G \circ F : \mathcal{C} \to \mathcal{E}$ given by

• ob $G \circ F : \mathsf{ob} \ \mathcal{C} \to \mathsf{ob} \ \mathcal{E}$

 $\mathsf{ob}\ (G\circ F)\coloneqq \lambda X.\mathsf{ob}\ G(\mathsf{ob}\ F(X))$

• $(G \circ F)_{X,Y}$: hom_C $(X,Y) \to$ hom_E(GFX,GFY) $(G \circ F)_{X,Y} := G_{FX,FY} \circ F_{X,Y}$

These two examples (with a little work left the reader) justify forming a category of categories.

Definition 1.2. The category of categories Cat has categories themselves as objects and functors between categories as maps.

Example 1.3. Consider $1 : \{\cdot_A\}$ (the <u>unit</u> category), with a single element and only the identity map.

Then for every $X \in \mathsf{ob} \ \mathcal{C}$, there is a functor:

$$[X]:\mathbb{1}\to \mathcal{C}$$

that 'picks out X'. It is defined by $\mathsf{ob}[X] \coloneqq \lambda A.X$, and $[X]_A \coloneqq \mathrm{id}_X$.

Example 1.4. Consider a category \mathcal{C} . There is a functor:

$$!: \mathcal{C} \to \mathbb{1}$$

given by

- ob $! \coloneqq \lambda x.A : \mathsf{ob} \ \mathcal{C} \to \mathsf{ob} \ \mathbb{1}$
- $!_{X,Y} \coloneqq \lambda f. \operatorname{id}_A : \hom_C(X, Y) \to \hom_1(A, A)$

Observe that the notation in the previous example is suggestive of the fact that 1 is terminal in Cat.

Exercise 1.2. Show that 1 is terminal and that the empty category is initial in *Cat*.

Exercise 1.3. For categories \mathcal{C}, \mathcal{D} , the product category $\mathcal{C} \times \mathcal{D}$ has

- objects: ob $(\mathcal{C} \times \mathcal{D}) \coloneqq$ ob $\mathcal{C} \times$ ob \mathcal{D}
- maps: $\hom_{\mathcal{C}\times\mathcal{D}}((C,D),(C',D')) \coloneqq \hom_{\mathcal{C}}(C,C') \times \hom_{\mathcal{D}}(D,D')$

The coproduct category $\mathcal{C} + \mathcal{D}$ is constructed in a similar manner.

Justify that the product and coproduct categories are in fact categories, and that they are the product and coproduct of the category Cat.

Hint: for the coproduct $C + \mathcal{D}$, consider the following definition for its morphisms:

- $\hom_{\mathcal{C}+\mathcal{D}}(C,C') \coloneqq \hom_{C}(C,C')$
- $\hom_{\mathcal{C}+\mathcal{D}}(D,D') \coloneqq \hom_D(D,D')$
- $\hom_{\mathcal{C}+\mathcal{D}}(C,D) \coloneqq \emptyset$
- $\hom_{\mathcal{C}+\mathcal{D}}(C',D') \coloneqq \emptyset$

Example 1.5. Consider the category $\mathcal{T}y$ (which has +, the coproduct, and T, a terminal object). Then we have a functor $Maybe : \mathcal{T}y \to \mathcal{T}y$ given by the following:

- ob $Maybe := \lambda X.X + T : Ty \to Ty$
- $Maybe_{X,Y}$: hom $_{\mathcal{T}y}(X,Y) \to hom_{\mathcal{T}y}(MaybeX, MaybeY)$ given by
 - $-\operatorname{Maybe}_{XY}(f:X\to Y) (just \ x) \coloneqq just(fx)$
 - $-\operatorname{Maybe}_{X,Y}(f:X\to Y) (nothing) \coloneqq nothing$

Exercise 1.4. Consider a category \mathcal{C} with coproducts and a terminal object T. Show that we can construct a functor $Maybe : \mathcal{C} \to \mathcal{C}$ with specification

- ob $Maybe := \lambda X.X + T : C \to C$
- $Maybe_{X,Y}$: $hom_{\mathcal{T}y}(X,Y) \to hom_{\mathcal{T}y}(MaybeX, MaybeY)$

Hint: Prove (and use) the following lemma.

Lemma 1.1. In a given category \mathcal{C}' which has products/coproducts, given two maps $X \xrightarrow{f} X'$ and $Y \xrightarrow{g} Y'$, it is possible to construct maps

- $X + Y \xrightarrow{f+g} X' + Y'$
- $X \times Y \xrightarrow{f \times g} X' \times Y'$

