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Chapter 1

Introduction

Powerful insights arise from linking two fields of study previously thought
separate. Examples include Descartes’s coordinates, which links geome-
try to algebra, Planck’s Quantum Theory, which links particles to waves,
and Shannon’s Information Theory, which links thermodynamics to com-
munication. Such a synthesis is offered by the principle of Propositions as
Types, which links logic to computation. At first sight it appears to be a
simple coincidence—almost a pun—but it turns out to be remarkably ro-
bust, inspiring the design of automated proof assistants and programming
languages, and continuing to influence the forefronts of computing. P.
Wadler [Wadler(2015)]

Logic provides computer science with both a unifying foundational framework and
a tool for modelling. In fact, logic has been called ”the calculus of computer science”,
playing a crucial role in diverse areas such as artificial intelligence, computational
complexity, distributed computing, database systems, hardware design, programming
languages, and software engineering

These notes are designed to provide to give a thorough introduction to modern
constructive logic, its numerous applications in computer science, and its mathematical
properties. In particular, we provide an introduction to its proof-theoretic foundations
and roots. Following Gentzen’s approach we define the meaning of propositions by
introduction rules, which assert a given proposition and explain how to conclude a given
proposition, and elimination rules, which justify how we can use a given proposition and
what consequences we can derive from it. In proof-theory, we are interested in studying
the structure of proofs which are constructed according to axioms and inference rules
of the logical system. This is in contrast to model theory, which is semantic in nature.

From a programming languages point of view, understanding the proof-theoretic
foundations is particularly fascinating because of the intimate deep connection between
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Chapter 1: Introduction

propositions and proofs and types and programs which is often referred to as the Curry-
Howard isomorphism and establishes that proofs are isomorphic to programs. This
correspondence has wide-ranging consequences in programming languages: it provides
insights into compiler and program transformations; it forms the basis of modern type
theory and directly is exploited in modern proof assistants such as Coq or Agda or
Beluga where propositions are types and proofs correspond to well-typed programs;
meta-theoretic proof techniques which have been developed for studying proof systems
are often used to establish properties and provide new insights about programs and
programming languages (for example, type preservation or normalization).

These lecture notes provide an introduction to Gentzen’s natural deduction system
and its correspondance to the lambda-calculus. We will also study meta-theoretic
properties of both the natural deduction system and the well-typed lambda-calculus
and highlight the symmetry behind introduction and elimination rules in logic and
programming languages. Starting from intuitionistic propositional logic, we extend
these ideas to first-order logic and discuss how to add induction over a given domain,
if time permits. This gives rise to a simple dependently typed language (i.e. indexed
types) over a given domain. Finally, we will study consistency of our logic. There
are two dual approaches: the first, pursued by Gentzen, concentrates on studying
the structure of proofs; we establish consistency of the natural deduction system by
translating it to a sequent calculus using cut-rule; subsequently we prove that the
cut-rule is admissible. As a consequence, every natural deduction proof also has a
cut-free proof (i.e. normal proof). While sequent calculi are interesting in their own
right, we will take a different approach of proving consistency: we are studying the
structure of programs and we prove that every program normalizes, i.e. evaluation
of that program will terminate and yield a normal form (which you can think of a
value). This will introduce a powerful and important proof technique, proofs using
logical relations following Tait.

Last, we will see how to extend these ideas to sub-strutural systems such as linear
logic, where we use assumptions exactly once. This leads to the question of how can
different logics (and from our perspective different programming languages) interoper-
ate? – This will give a gentle introduction to the fundamenteal ideas of adjoint logic
that allows us to accommodate a range of logics – from modal logic S4, to lax logic,
affine logic, linear logic, and intuitionistic (unrestricted) logic.

Many of the early chapters of these notes are inspired by lectures and lecture notes
by Frank Pfenning.
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Chapter 2

Natural Deduction

“Ich wollte nun zunächst einmal einen Formalismus aufstellen, der dem
wirklichen Schließen möglichst nahe kommt. So ergab sich ein “Kalkül des
natürliche Schließens”.

Untersuchungen über das logische Schließen [Gentzen(1935)]

In this chapter, we explore the fundamental principles of defining logics by revisiting
Gentzen’s system NJ [Gentzen(1935)], the calculus of natural deduction. The calculus
was designed and developed by Gentzen to capture mathematical reasoning practice;
his calculus stands in contrast to the common systems of logic at that time proposed by
Frege, Russel, and Hilbert all of which have few reasoning reasoning principles, namely
modus ponens, and several axioms. In Gentzen’s system on the other hand we do not in
general start from axioms to derive eventually our proposition; instead, we reason from
assumptions. The meaning of each logical connective is given by rules which introduce
it into the discourse together with rules which eliminate it, i.e. rules which tell us how
to use the information described by a logical connective in the discourse. To put it
differently, the meaning of a proposition is its use. An important aspect of Gentzen’s
system is that the meaning (i.e. the introduction and elimination rules) is defined
without reference to any other connective. This allows for modular definition and
extension of the logic, but more importantly this modularity extends to meta-theoretic
study of natural deduction and greatly simplifies and systematically structures proofs
about the logical system. We will exploit this modularity of logics often throughout
this course as we consider many fragments and extension.

Gentzen’s work was a milestone in the development of logic and it has had wide
ranging influence today. In particular, it has influenced how we define programming
languages and type systems based on the observation that proofs in natural deduction
are isomorphic to terms in the λ-calculus. The relationship between proofs and pro-
grams was first observed by Curry for Hilbert’s system of logic; Howard subsequently
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Chapter 2: Natural Deduction 2.1 Propositions

observed that proofs in natural deduction directly correspond to functional programs.
This relationship between proofs and programs is often referred as the Curry-Howard
isomorphism. In this course we will explore the intimate connection between proposi-
tions and proofs on the one hand and types and programs on the other.

2.1 Propositions
There are two important ingredients in defining a logic: what are the valid propositions
and what is their meaning. To define valid propositions, the simplest most familiar way
is to define their grammar using Backus-Naur form (BNF). To begin with we define our
propositions consisting of true (⊤), conjunction (∧), implication (⊃), and disjunction
(∨).

Propositions A, B, C ::= ⊤ | A ∧ B | A ⊃ B | A ∨ B

We will use A, B, C to range over propositions. The grammar only defines when
propositions are well-formed. It essentially gives an inductive definition of well-formed
propositions:

• ⊤ is well-formed proposition

• If A and B are well-formed proposition, then A ∧ B and A ⊃ B, and A ∨ B are
a well-formed proposition.

• Nothing else is a well-formed proposition.

2.2 Judgements and Meaning
To define the meaning of a proposition we will introduce the idea of a judgement, or
more precisely, an analytic judgment. So, what is an an analytic judgment? – According
to Per Martin Loef, “judgments are those that become evident merely by conceptual
analysis” [Martin-L”of(1994)]. An example Per Martin Loef gives is the following:

The judgment “The temperature is +25oC” is not an analytic judgment by itself.
However, taken together with the actual thermometer showing 25oC it makes the judg-
ment evident. It is analytical in the sense that we can check it, namely by looking
at the thermometer. What does this have to to with logic? – In logic, we may have
different judgments about or involving propositions, the objects that we are analyzing.
First, we revisit our definition of well-formed propositions using judgments.
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Chapter 2: Natural Deduction 2.2 Judgements and Meaning

Figure 2.1: Example from [Martin-L”of(1994)]

The (analytic) judgment A wf defines when a proposition is well-formed. In
particular, we can check and decide when this is the case. We will define the judgment
A wf using inference rules. The general form of an inference rule is

J1 . . . Jn

J
name

where J1, . . . , Jn are called the premises and J is called the conclusion. We can
read the inference rule as follows: Given the premises J1, . . . , Jn, we can conclude J .
An inference rule with no premises is called an axiom.

Nowe we are ready to define the well-formedness of proposition as follows.

A wf Proposition A is well-formed

⊤ wf
A wf B wf
(A op B) wf {∧, ∨, ⊃} ∈ op

Our judgmental definition of when a proposition is well-formed provides a more
general approach to defining well-formed (and in general meaningful) objects than the
BNF grammar approach. Especially as we move to richer languages simply giving the
grammar of objects in a language may not be enough to capture what objects we want
to consider well-formed.

There are many other judgements one might think of defining. In particular, we
will be concerned with defining when a proposition is true using the judgment A true
below. But there are other judgments that we could define. We list a few below:

• A false (to define when a proposition A is false)
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Chapter 2: Natural Deduction 2.2 Judgements and Meaning

• A possible (to define when a proposition is possible typical in modal logics)

• A true at timet (to define when a proposition A is true at time tfalse)

2.2.1 The meaning of true
We are here concerned with defining the meaning of a proposition A by defining when
it is true using the judgment A true . We consider each connective individually.

Conjunction We define the meaning of A ∧ B true using introduction (i.e. how
to introduce the connective) and elimination rules (i.e. how to use the information
contained in the connective).

A true B true
A ∧ B true ∧I

A ∧ B true
A true ∧El

A ∧ B true
B true ∧Er

The name ∧I stands for “conjunction introduction”. Given A true and B true, we
can conclude that A∧B true. The connective ∧ internalizes the “and” as a proposition.
The rule ∧I specifies the meaning of conjunction. How can we use the information
contained in A ∧ B true? To put it differently, what can we deduce from A ∧ B true?
- Clearly, for A ∧ B true to hold, we must have A true and also B true. Note that we
can have only one conclusion and we cannot write

A ∧ B true
A true B true BAD FORMAT

Instead, we simply define two elimination rules: ∧El (getting the left part of the
conjunction) and ∧Er (getting the right part of the conjunction).

We will see later how to guarantee that these introduction and elimination rules fit
together harmonically.

Truth The proposition “truth” is written as ⊤. The proposition ⊤ should always
be true. As a consequence, the judgement ⊤ true holds unconditionally and has no
premises. It is an axiom in our logical system.

⊤ true ⊤I

Since ⊤ holds unconditionally, there is no information to be obtained from it; hence
there is no elimination rule.
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Chapter 2: Natural Deduction 2.3 Hypothetical judgements and derivations

A simple proof Before we go on and discuss other propositions, we consider what it
means to prove a given proposition. Proving means constructing a derivation. Since
these derivation take the form of a tree with axioms at the leafs, we also often call it
a proof tree or derivation tree.

⊤ true ⊤I
⊤ true ⊤I ⊤ true ⊤I

⊤ ∧ ⊤ true ∧I

⊤ ∧ (⊤ ∧ ⊤) true ∧I

Derivations convince us of the truth of a proposition. As we will see, we distinguish
between proof and derivation following philosophical ideas by Martin Löfs. A proof,
in contrast to a derivation, contains all the data necessary for computational (i.e.
mechanical) verification of a proposition.

2.3 Hypothetical judgements and derivations
So far, we cannot prove interesting statements. In particular, we cannot accept as a
valid derivation

A ∧ (B ∧ C) true
B ∧ C true ∧r

B true ∧l

While the use of the rule ∧l and ∧r is correct, A∧ (B ∧C) true is unjustified. It is
certainly not true unconditionally. However, we might want to say that we can derive
B true, given the assumption A ∧ (B ∧ C) true. This leads us to the important notion
of a hypothetical derivation and hypothetical judgement. In general, we may have more
than one assumption, so a hypothetical derivation has the form

J1 . . . Jn
...
J

We can derive J given the assumptions J1, . . ., Jn. Note, that we make no claims as
to whether we can in fact prove J1, . . ., Jn; they are unproven assumptions. However,
if we do have derivations establishing that Ji is true, then we can replace the use of
the assumption Ji with the corresponding derivation tree and eliminate the use of this
assumption. This is called the substitution principle for hypothesis.
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Chapter 2: Natural Deduction 2.3 Hypothetical judgements and derivations

Implications Using a hypothetical judgement, we can now explain the meaning of
A ⊃ B (i.e. A implies B) which internalizes hypothetical reasoning on the level of
propositions.

We introduce A ⊃ B true, if we have established A true under the assumption
B true.

A true u

...
B true

A ⊃ B true ⊃ Iu

The label u indicates the assumption A true; using the label as part of the name
⊃ Iu makes it clear that the assumption u can only be used to establish B true, but it
is discharged in the conclusion A ⊃ B true; we internalized it as part of the proposition
A ⊃ B and the assumption A true is no longer available. Hence, assumptions exist
only within a certain scope.

Many mistakes in building proofs are made by violating the scope, i.e. using as-
sumptions where they are not available. Let us illustrate using the rule ⊃ I in a
concrete example.

A true u
B true v

A ∧ B true ∧I

B ⊃ (A ∧ B) true ⊃ Iv

A ⊃ B ⊃ (A ∧ B) true ⊃ Iu

Note implications are right associative and we do not write parenthesis around
B ⊃ (A ∧ B). Also observe how we discharge all assumptions. It is critical that all
labels denoting assumptions are distinct, even if they denote the “same” assumption.
Consider for example the following proof below.

A true u
A true v

A ∧ A true ∧I

A ⊃ (A ∧ A) true ⊃ Iv

A ⊃ A ⊃ (A ∧ A) true ⊃ Iu

We introduce A true twice giving each assumption a distinct label. There are in
fact many proofs we could have given for A ⊃ A ⊃ (A ∧ A). Some variations we give
below.
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Chapter 2: Natural Deduction 2.3 Hypothetical judgements and derivations

A true u
A true v

A ∧ A true ∧I

A ⊃ (A ∧ A) true ⊃ Iv

A ⊃ A ⊃ (A ∧ A) true ⊃ Iu

A true u
A true u

A ∧ A true ∧I

A ⊃ (A ∧ A) true ⊃ Iv

A ⊃ A ⊃ (A ∧ A) true ⊃ Iu

A true v
A true v

A ∧ A true ∧I

A ⊃ (A ∧ A) true ⊃ Iv

A ⊃ A ⊃ (A ∧ A) true ⊃ Iu

The rightmost derivation does not use the assumption u while the middle derivation
does not use the assumption v. This is fine; assumptions do not have to be used and
additional assumptions do not alter the truth of a given statement. Moreover, we note
that both trees use an assumption more than once; this is also fine. Assumptions can
be use as often as we want to. Finally, we note that the order in which assumptions are
introduced does not enforce order of use, i.e. just because we introduce the assumption
u before v, we are not required to first use u and then use v. The order of assumptions
is irrelevant. We will make these structural properties about assumptions more precise
when we study the meta-theoretic properties of our logical system.

Since we have ways to introduce an implication A ⊃ B, we also need a rule which
allows us to use an implication and derive information from it. If we have a derivation
for A ⊃ B and at the same time have a proof for A, we can conclude B. This is justified
by the substitution principle for hypothetical derivations.

A ⊃ B true A true
B true ⊃ E

A few examples using hypothetical derivations We give here a few examples. Con-
sider first constructing a derivation for (A ∧ B) ⊃ (B ∧ A) true. We do it here
incrementally. A good strategy is to work from the conclusion towards the assump-
tions by applying a series of intro-rules; once we cannot apply any intro-rules any more,
we try to close the gap to the assumptions by reasoning from the assumptions using
elimination rules. Later, we will make this strategy more precise and show that this
strategy is not only sound but also complete.

Employing this strategy, we first use ⊃ I followed by ∧I to find the derivation for
(A ∧ B) ⊃ (B ∧ A) true.

A ∧ B true u

...

B true A true
B ∧ A true ∧I

(A ∧ B) ⊃ (B ∧ A) true ⊃ Iu
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Chapter 2: Natural Deduction 2.3 Hypothetical judgements and derivations

We now try to close the gap by reasoning from the assumption A∧B true; this can
be accomplished by using the elimination rules ∧l and ∧r.

A ∧ B true u

B true ∧Er
A ∧ B true u

A true ∧El

B ∧ A true ∧I

(A ∧ B) ⊃ (B ∧ A) true ⊃ Iu

Note again that we re-use the assumption u.
In the next example, we prove distributivity law allowing us to move implications

over conjunctions. We again follow the strategy of applying all introduction rules first.

A ⊃ (B ∧ C) true
u

A true v

...

B true
A ⊃ B true ⊃ Iv

A ⊃ (B ∧ C) true
u

A true v

...

C true
A ⊃ C true ⊃ Iv

(A ⊃ B)∧ (A ⊃ C) true ∧I

(A ⊃ (B ∧ C)) ⊃ ((A ⊃ B)∧ (A ⊃ C)) true ⊃ Iu

We now close the gap by using elimination rules ⊃ E and ∧Er (∧El respectively).

A ⊃ (B ∧ C) true
u

A true v

B ∧ C true ⊃ E

B true ∧El

A ⊃ B true ⊃ Iv

A ⊃ (B ∧ C) true
u

A true v

B ∧ C true ⊃ E

C true ∧Er

A ⊃ C true ⊃ Iv

(A ⊃ B)∧ (A ⊃ C) true ∧I

(A ⊃ (B ∧ C)) ⊃ ((A ⊃ B)∧ (A ⊃ C)) true ⊃ Iu

Disjunction We now consider disjunction A ∨ B (read as “A or B”). This will use
the concepts we have seen so far, but is slightly more challenging. The meaning of
disjunction is characterized by two introduction rules.

A true
A ∨ B true ∨Il

B true
A ∨ B true ∨Ir

How should we define the elimination rule for A ∨ B? - We may think to describe
it as follows
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Chapter 2: Natural Deduction 2.3 Hypothetical judgements and derivations

A ∨ B true
A true BAD RULE

This would allow us to obtain a proof for A from the information A ∨ B true; but
if we know A ∨ B true, it could well be that A is false and B is true. So concluding
from A ∨ B is unsound! In particular, we can derive the truth of any proposition A.

Thus we take a different approach. If we know A ∨ B true, then we consider two
cases: A true and B true. If in both cases we can establish C true, then it must be the
case that C is true!

A ∨ B true

A true u

...

C true

B true u

...

C true
C true ∨Eu,v

We again use hypothetical judgement to describe the rule for disjunction. Note
the scope of the assumptions. The assumption A true labelled u can only be used in
the middle premise, while the assumption B true labelled v can only be used in the
rightmost premise. Both premises are discharged at the disjunction elimination rule.

Let us consider an example to understand how to use the disjunction elimination
rule and prove commutativity of disjunction.

A ∨ B true u

...

B ∨ A true
(A ∨ B) ⊃ (B ∨ A) true ⊃ Iu

At this point our strategy of continuing to apply introduction rules and working
from the bottom-up, does not work, since we would need to commit to prove either
A true or B true. Instead, we will use our assumption A ∨ B true and then prove
A ∨ B true under the assumption A true and separately prove A ∨ B true under the
assumption B true.

A ∨ B true u A true v

B ∨ A true ∨Il
B true w

B ∨ A true ∨Ir

B ∨ A true ∨Ev,w

(A ∨ B) ⊃ (B ∨ A) true ⊃ Iu
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Chapter 2: Natural Deduction 2.4 Local soundness and completeness

Falsehood Last but not least, we consider the rule for falsehood (written as ⊥).
Clearly, we should never be able to prove (directly) ⊥. Hence there is no introduction
rule which introduces ⊥. However, we might nevertheless derive ⊥ (for example because
our assumptions are contradictory or it occurs directly in our assumptions) in the
process of constructing a derivation. If we have derived ⊥, then we are able to conclude
anything from it, since we have arrived at a contradiction.

⊥ true
C true ⊥E

It might not be obvious that ⊥ is very useful. It is particularly important in allowing
us to define ¬A (read as “not A) as A ⊃ ⊥. More on this topic later.

2.4 Local soundness and completeness
One might ask how do we know that the introduction and elimination rules we have
given to define the meaning for each proposition are sensible. We have earlier alluded to
the unsound proposal for the disjunction rule. Clearly, the meaning is not just defined
by any pair of introduction and elimination rules, but these rules must meet certain
conditions; in particular, they should not allow us to deduce new truths (soundness) and
they should be strong enough to obtain all the information contained in a connective
(completeness) [Belnap(1962)]. This is what sometimes is referred to as harmony by
[Dummett(1993)]. Let us make this idea more precise:

• Local Soundness if we introduce a connective and then immediately eliminate it,
we should be able to erase this detour and find a more direct derivation ending
in the conclusion. If this property fails, the elimination rules are too strong, i.e.
they allow us to derive more information than we should.

• Local completeness: we can eliminate a connective in such a way that it retains
sufficient information to reconstitute it by an introduction rule. If this prop-
erty fails, the elimination rules are too weak: they do not allow us to conclude
everything we should be able to.

2.4.1 Conjunction
We revisit here the harmony of the given introduction and elimination rules for con-
junction and check our intuition that they are sensible. If we consider the rule ∧I as
a complete definition for A ∧ B true, we should be able to recover both A true and
B true.
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Chapter 2: Natural Deduction 2.4 Local soundness and completeness

Local soundness

D1

A true
D2

B true
∧I

A ∧ B true
∧El

A true =⇒ D1

A true

and symmetrically

D1

A true
D2

B true
∧I

A ∧ B true
∧El

A true =⇒ D2

B true

Clearly, it is unnecessary to first introduce a conjunction and then immediately
eliminate it, since there is a more direct proof already. These detours are what makes
proof search infeasible in practice in the natural deduction calculus. It also means
that there are many different proofs for a give proposition many of which can collapse
to the more direct proof which does not use the given detour. This process is called
normalization - or trying to find a normal form of a proof.

Local completeness We need to show that A ∧ B true contains enough information
to rebuild a proof for A ∧ B true.

D
A ∧ B true =⇒

D
A ∧ B true

∧El
A true

D
A ∧ B true

∧Er
B true

∧I
A ∧ B true

2.4.2 Implications
Next, we revisit the given introduction and elimination rules for implications. Again,
we first verify that we can introduce A ⊃ B followed by eliminating it without gaining
additional information.
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Chapter 2: Natural Deduction 2.4 Local soundness and completeness

u
A true

D
B true

⊃ Iu

A ⊃ B true
E

A true
⊃ E

B true =⇒

E

A true
D

B true

Given the hypothetical derivation D which depends on the assumption A true, we
can eliminate the use of this assumption by simply referring to E the proof for A true.
We sometimes write

E

A true
D

B true
more compactly as [E/u]D

B true

This emphasizes the true nature of what is happening: we are substituting for the
assumption u the proof E . Note that this local reduction may significantly increase the
overall size of the derivation, since the derivation E is substituted for each occurrence
of the assumption labeled u in D and may thus be replicated many times.

Local completeness We now check whether our elimination rules are strong enough
to get all the information out they contain, i.e. can we reconstitute A ⊃ B true given
a proof for it?

D
A ⊃ B true =⇒

D
A ⊃ B true

u
A true

⊃ E
B true

⊃ Iu

A ⊃ B true

2.4.3 Disjunction
We can now see whether we understand the principle behind local soundness and
completeness.
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Chapter 2: Natural Deduction 2.4 Local soundness and completeness

Local soundness We establish again that we cannot derive any unsound information
from first introducing A ∨ B and then eliminating it. Note that the rule ∨Eu,v ends
in a generic proposition C which is independent of A and B. We note that we have
a proof E for C which depends on the assumption A true. At the same time we have
a proof D which establishes A true. Therefore by the substitution principle, we can
replace and justify any uses of the assumption A true in E by the proof D.

D
A

∨Il
A ∨ B

u
A true

E
C true

u
B true

F
C true

∨Eu,v

C true =⇒

D

A true
E

C true

Similarly, we can show

D
B

∨Ir
A ∨ B

u
A true

E
C true

u
B true

F
C true

∨Eu,v

C true =⇒

D

B true
F

C true

Local completeness

D
A ∨ B true =⇒

D
A ∨ B true

u
A true

∨Il
A ∨ B true

v
B true

∨Ir
A ∨ B true

∨Eu,v

A ∨ B true

2.4.4 Negation
So far we have simply used ¬A as an abbreviation for A ⊃ ⊥ and at any point we
can expanded ¬A exposing its definition. How could we define the meaning of ¬A
direction? - In order to derive ¬A, we assume A and try to derive a contradiction.
We want to define ¬A without reference to ⊥; to accomplish this we use a parametric
propositional parameter p which stands for any proposition. We can therefore establish
¬A, if we are able to derive any proposition p from the assumption A true. Note that
p is fixed but arbitrary once we pick it.
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u
A true

...
p true

¬Ip,u

¬A true
¬A true A true

¬E
C true

We can check again local soundness: if we introduce ¬A and then eliminate it, we
have not gained any information.

u
A true

D
p true

¬Ipu

¬A true
E

A true
¬E

C true =⇒

E

A true
[C/p]D
C true

Since p denotes any proposition and D is parametric in p, we can replace p with C;
moreover, since we have a proof E for A, we can also eliminate the assumption u by
replacing any reference to u with the actual proof E .

The local expansion is similar to the case for implications.

D
¬A true =⇒

D
¬A true

u
A true

⊃ E
p true

⊃ Ipu

¬A true
It is important to understand the use of parameters here. Parameters allow us to

prove a given judgment generically without committing to a particular proposition. As
a rule of thumb, if one rule introduces a parameter and describes a derivation which
holds generically, the other must is a derivation for a concrete instance.

2.5 Localizing Hypothesis
So far, we have considered Gentzen’s style natural deduction proofs where assumptions
in the proof are implicit. Reasoning directly from assumptions results in compact and
elegant (on-paper) proofs. Yet this is inconvenient for several reasons: it is hard to
keep track what assumptions are available; it is more difficult to reason about such
proofs via structural induction over the introduction and elimination rules since we do
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Γ ⊢ A true Γ ⊢ B true
Γ ⊢ A ∧ B true ∧I

Γ ⊢ A ∧ B true
Γ ⊢ A true ∧El

Γ ⊢ A ∧ B true
Γ ⊢ B true ∧Er

Γ, u:A true ⊢ B true
Γ ⊢ A ⊃ B true ⊃ Iu Γ ⊢ A ⊃ B true Γ ⊢ A true

Γ ⊢ B true ⊃ E

Γ ⊢ A true
Γ ⊢ A ∨ B true ∨Il

Γ ⊢ B true
Γ ⊢ A ∨ B true ∨Ir

Γ ⊢ A ∨ B true Γ, u : A true ⊢ C true Γ, v : B true ⊢ C true
Γ ⊢ C true ∨Eu,v

Γ ⊢ ⊤ true ⊤I
Γ ⊢ ⊥ true
Γ ⊢ C true ⊥E

u : A true ∈ Γ
Γ ⊢ A true u

Figure 2.2: Natural Deduction with Explicit Context for Assumptions

not have an explicit base case for assumptions; it is more difficult to state and prove
properties about assumptions such as weakening or substitution properties.

For these reasons, we will introduce an explicit context formulation of the natural
deduction rules we have seen so far making explicit some of the ambiguity of the
two-dimensional notation. We therefore introduce an explicit context for bookkeeping,
since when establishing properties about a given language, it allows us to consider the
variable case(s) separately and to state clearly when considering closed objects, i.e., an
object in the empty context. More importantly, while structural properties of contexts
are implicitly present in the above presentation of inference rules (where assumptions
are managed informally), the explicit context presentation makes them more apparent
and highlights their use in reasoning about contexts.

Typically, a context of assumptions is characterized as a sequence of formulas listing
its elements. More formally we define contexts as follows.

Context Γ ::= · | Γ, u:A true
We hence generalize our judgment A true to Γ ⊢ A true which can be read as

“given the assumptions in Γ we can prove A. This makes our assumptions explicit.
We interpret all our inference rules within the context Γ (see Fig. 2.2).

We can now state more succinctly structural properties about our logic

1. Weakening Extra assumptions don’t matter.
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2. Exchange The order of hypothetical assumptions does not matter.

3. Contraction An assumption can be used as often as we like.

as actual theorems which can be proven by structural induction.

Theorem 2.5.1.

1. Weakening. If Γ, Γ ′ ⊢ A true then Γ, u : B true, Γ ′ ⊢ A true.

2. Exchange If Γ, x : B1 true, y : B2 true, Γ ′ ⊢ A true
then Γ, y : B2 true, x : B1 true, Γ ′ ⊢ A true.

3. Contraction If Γ, x : B true, y : B true, Γ ′ ⊢ A true then Γ, x : B true, Γ ′ ⊢ A true.

In addition to these structural properties, we can now also state succinctly the
substitution property.

Theorem 2.5.2 (Substitution).
If Γ, x : A true, Γ ′ ⊢ B true and Γ ⊢ A true then Γ, Γ ′ ⊢ B true.

2.6 Proofs by structural induction
We will here review how to prove properties about a given formal system; this is in
contrast to reasoning within a given formal system. It is also referred to as “meta-
reasoning”.

One of the most common meta-reasoning techniques is “proof by structural in-
duction on a given proof tree or derivation”. One can always reduce this structural
induction argument to a mathematical induction purely based on the height of the
proof tree. We illustrate this proof technique by proving the substitution property.

Theorem 2.6.1. If Γ, u : A true, Γ ′ ⊢ C true and Γ ⊢ A true then Γ, Γ ′ ⊢ C true.

Proof. By structural induction on the derivation Γ, u : A true, Γ ′ ⊢ C true. We consider
here a few cases, although for it to be a complete proof we must consider all rules.

There are three base cases to consider; to be thorough we write them out.

Case D = ⊤I
Γ, u : A true, Γ ′ ⊢ ⊤ true

.

Γ, Γ ′ ⊢ ⊤ true by ⊤I
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Case D = u
Γ, u : A true, Γ ′ ⊢ A true

.

Γ ⊢ A true by assumption
Γ, Γ ′ ⊢ A true by weakening

Case D =
v : C true ∈ (Γ, Γ ′)

v
Γ, u : A true, Γ ′ ⊢ C true

Γ, Γ ′ ⊢ C true by rule v

We now consider some of the step cases. The induction hypothesis allos us to assume
the substitution property holds for smaller derivations.

Case D =

F
Γ, u : A true, Γ ′ ⊢ C true

E
Γ, u : A true, Γ ′ ⊢ B true

∧I
Γ, u : A true, Γ ′ ⊢ C ∧ B true

Γ ⊢ A true by assumption
Γ, Γ ′ ⊢ C true by i.h. using F and assumption
Γ, Γ ′ ⊢ B true by i.h. using E and assumption
Γ, Γ ′ ⊢ C ∧ B true by rule ∧I

The other cases for ∧El, ∧Er, ⊃ E, ∨Il, ∨Ir, or ⊥E follow a similar schema. A bit
more interesting are those cases where we introduce new assumptions and the context
of assumptions grows.

Case D =

E
Γ, u : A true, Γ ′, v:B true ⊢ C true

⊃ Iv

Γ, u : A true, Γ ′ ⊢ B ⊃ C true

Γ ⊢ A true by assumption
Γ, Γ ′, v : B true ⊢ C true by i.h. using E
Γ, Γ ′ ⊢ B ⊃ C true by rule ⊃ Iv.

Note that the appeal to the induction hypothesis is valid, because the height of
the derivation E is smaller than the height of the derivation D. Our justification is
independent of the fact that the context in fact grew.
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2.7 Exercises

Exercise 2.7.1. Give proofs in natural deduction for the problems listed below. Do
these proofs on paper.

• Recall that in the problem formulations below conjunction (∧) and disjunction
(∨) bind tighter than implications (⊃) and implications are right-associative.

• Beluga template available upon request; if you are keen to explore Beluga,
please contact brigitte.pientka@mcgill.ca.

B1 Basic (A ∧ (B ∧ C)) ⊃ A ∧ B

B2 Basic (A ⊃ B) ⊃ ((B ⊃ C) ⊃ A ⊃ C)

B3 Basic ((A ∨ B) ⊃ C) ⊃ (A ⊃ C)∧ (B ⊃ C)

B4 Basic ((A ⊃ C)∧ (B ⊃ C)) ⊃ (A ∨ B) ⊃ C

B5 Basic (A ⊃ B)∧ (A ∨ B) ⊃ (B ∨ C)

B6 Basic A ∨ (B ∧ C) ⊃ (A ∨ B)∧ (A ∨ C)

B7 Basic (A ∨ B)∧ (A ∨ C) ⊃ A ∨ (B ∧ C)

Exercise 2.7.2. Assume someone defines conjunction with the following two rules:

A ∧ B

u
A

v
B

...
C

∧Eu,v

C

A B
∧I

A ∧ B

Are these rules sound and complete? – Show local soundness and completeness.

Exercise 2.7.3. Give a direct definition of “A iff B”, which means “A implies B and B
implies A”.

1. Give introduction and elimination rules for iff without recourse to any other
logical connectives.
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2. Display the local reductions that show the local soundness of the elimination
rules.

3. Display the local expansion that show the local completeness of the elimination
rules.

Exercise 2.7.4. A∧B is usually defined as ¬(A ∧ B). In this problem we explore the
definition of nand using introduction and elimination rules.

1. Give introduction and elimination rules for nand without recourse to any other
logical connectives.

2. Display the local reductions that show the local soundness of the elimination
rules.

3. Display the local expansion that show the local completeness of the elimination
rules.

Exercise 2.7.5. Extend the proof of the substitution lemma for the elimination rules
for conjunction (∧Ei) and disjunction (∨E).
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Chapter 3

Proof Terms

“For my money, Gentzen’s natural deduction and Church’s lambda calculus
are on a par with Einstein’s relativity and Dirac’s quantum physics for
elegance and insight. And the maths are a lot simpler. “

Proofs as Programs: 19th Century Logic and 21 Century Computing, P.
Wadler [Wadler(2000)]

In this chapter, we describe the relationship between propositions and proofs on the
one hand and types and programs on the other. On the propositional fragment of
logic this is referred to as the Curry-Howard isomorphism. Martin Löf developed this
intimate relationship of propositions and types further leading to what we call type
theory. More precisely, we will establish the relationship between natural deduction
proofs and programs written in Church’s lambda-calculus.

Curry first observed a perhaps surprising but possibly merely coincidental similarity
between some axioms of intuitionistic and combinatory logic in the 1930s. He subse-
quently noted Hilbert-style deduction systems, coincides combinators in the lambda-
calculus. Howard noticed in 1969 the correspondance between Gentzen’s natural de-
duction calculus and the simply-typed lambda-calculus. Independently, Reynolds ex-
tended the simply-typed lambda-calculus to the polymorphic lambda-calculus which
corresponds to to second-order logic where we quantify over propositions. Since then
the isomorphism has been applied in a wider variety of cases, and it took on both
theoretical and philosophical significance.

Its theoretical significance lies in the fact that it can be used to prove strong nor-
malization of natural deduction, i.e., every derivation in the natural deduction can
be translated to a normal derivation. In fact following Tait a now standard way to
prove this is by defining reducibility candidates which describe sets of terms that are
reducible at a given type (proposition).
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Its philosophical significance arises out of the claim that the lambda term assigned
to a derivation can be taken to be the “computational content” of the derivation. In
fact, the reduction rules for lambda-terms (i.e. how we reduce and compute with
lambda-terms) can be derived from local soundness and local completeness properties
in the natural deduction calculus. Building a language based on logical foundations
also provides insights into the meaning of computational properties and constructs.
Rather than adding a feature to a language in an ad-hoc manner, we can ask what is
the computational interpretation of this proposition and relate this interpretation to
computational practice.

3.1 Propositions as Types
In order to highlight the relationship between proofs and programs, we introduce a new
judgement M : A which reads as “M is a proof term for proposition A”. Our intention
is to capture the structure of the proof using M . As we will see there are also other
interpretations of this judgement:

M : A
M is a proof term for proposition A
M is a program of type A

These dual interpretations are at the heart of the Curry-Howard isomorphism. We
can think of M as the term that represents the proof of A true or we think of A as the
type of the program M .

Our intention is that

M : A iff A true

However, we want in fact more than merely that if a given proposition A is provable
there exists a program M that has type A. We want that the derivation for M : A
has the identical structure as the derivation for A true. We will revisit our natural
deduction rules and annotate them with proof terms. The isomorphism between M : A
and A true will then become obvious. We will achieve this by annotating our previous
introduction and elimination rules in the natural deduction calculus with proof terms.

Conjunction Constructively, we can think of A∧B true as a pair of proofs: the proof
M for A true and the proof N for B true.

M : A N : B
∧I

⟨M, N⟩ : A ∧ B
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The elimination rules correspond to the projections from a pair to its first and
second element.

M : A ∧ B
∧Elfst M : A

M : A ∧ B
∧Ersnd M : B

In other words, conjunction A ∧ B corresponds to the cross product type A × B.
We can also annotate the local soundness rule:

D1

M : A
D2

N : B
∧I

⟨M, N⟩ : A ∧ B
∧Elfst ⟨M, N⟩ : A =⇒ D1

M : A

and dually

D1

M : A
D2

N : B
∧I

⟨M, N⟩ : A ∧ B
∧Elsnd ⟨M, N⟩ : A =⇒ D2

N : B

The local soundness proofs for ∧ give rise to two reduction rule:

fst ⟨M, N⟩ =⇒ M
snd ⟨M, N⟩ =⇒ N

We can interpret

M =⇒ M ′ M reduces to M ′

A computation then proceeds by a sequence of reduction steps:

M =⇒ M1 =⇒ . . . =⇒ Mn

We reduce M until we (hopefully) reach a normal form which is the result of the
computation which cannot be reduced any further. This normal form corresponds to
a normal proof in the natural deduction calculus that does not have any detours. The
annotated local soundness proof can be interpreted as:

If M : A and M =⇒ M ′ then M ′ : A
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We can read it as follows: If M has type A, and M reduces to M ′, then M ′ has also
type A, i.e. reduction preserves types. This statement is often referred to as subject
reduction or type preservation in programming languages. Wright and Felleisen [?] were
the first to advocate using this idea to prove type soundness for programming languages.
It is proven by case analysis (and induction) on M =⇒ M ′. Our local soundness proof
for ∧ describes the case for the two reduction rules: fst ⟨M, N⟩ =⇒ M and
snd ⟨M, N⟩ =⇒ N . We will more elaborate on reductions and their theoretical
properties later.

Truth Constructively, ⊤ corresponds to the unit element ().

⊤I
() : ⊤

⊤ in logic corresponds to the unit type often written as unit or 1. There is no
elimination rule for ⊤ and hence there is no reduction. This makes sense, since () is
already a value it cannot step.

Implication Constructively, we can think of a proof for A ⊃ B as a function which
given a proof for A, knows how to construct and return a proof for B. This function
accepts as input a proof of type A and we returns a proof of type B”. We characterize
such anonymous functions using λ-abstraction.

x:A
u

...
M : B

λx:A.M : A ⊃ B
⊃ Ix,u

The variable x in λx:A.M denotes a proof term. However, we also have the typing
assumption x:A (read as “the variable x has type A”). It corresponds to our labelling
hypothesis A true in the natural deduction system.

Consider the trivial proof for (A ∧ A) ⊃ A true.

u
x : A

∧Elfst x : A
⊃x,u

λx:(A ∧ A).fst x : (A ∧ A) ⊃ A

Note that we use u to justify that x has type A. Since we ensure that the variable
that is being introduced is unique in the ⊃-rule, we often simply identify the assumption
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x : A (which reads as “variable x has type A) with the name x in practice, although
they actually refer to two different entities.

Note that a different proof where we extract the right A from A∧A, can results in
a different proof term.

u
x : A

∧Ersnd x : A
⊃x,u

λx:(A ∧ A).snd x : (A ∧ A) ⊃ A

The probably simplest proof for A ⊃ A can be described by the identity function
λx:A.x.

The elimination rule for ⊃ E corresponds to function application. Given the proof
term M for proposition (type) A ⊃ B and a proof term N for proposition (type) A,
characterize the proof term for B using the application M N .

M : A ⊃ B Γ ⊢ N : A
⊃ E

M N : B

An implications A ⊃ B can be interpreted as a function type A → B.The introduc-
tion rule corresponds to the typing rule for function abstractions and the elimination
rule corresponds to the typing rule for function application.

Note that we continue to recover the natural deduction rules by simply erasing the
proof terms. This will continue to be the case and highlights the isomorphic structure
of proof trees and typing derivations.

As a second example, let us consider the proposition (A ∧ B) ⊃ (B ∧ A) whose
proof we’ve seen earlier. We will write it here in sequent-style natural deduction and
annotate it with proof terms.

u
x : A ∧ B

∧Ersnd x : B true

u
x : A ∧ B

∧Elfst x : A true
∧I

⟨snd x, fst x⟩ : (B ∧ A) true
⊃ Iu

λx : (A ∧ B).⟨snd x, fst x⟩ : (A ∧ B) ⊃ (B ∧ A) true

Let us revisit the local soundness proof for ⊃ to highlight the interaction between
function abstraction and function application.
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u
x : A

D
M : B

⊃ Ix,u

λx:A.B : A ⊃ B
E

N : A
⊃ E

(λx:A.M) N : B
=⇒

E
u

N : A

[N/x]D
[N/x]M : B

This gives rise to the reduction rule for function applications:

(λx:A.M) N =⇒ [N/x]M

The annotated soundness proof above corresponds to the case in proving that the
reduction rule preserves types. It also highlights the distinction between x which
describes a term of type A and u which describes the assumption that x has type A.
In the proof, we appeal in fact to two substitution lemmas:

1. Substitution lemma on terms: Replace any occurrence of x with N

2. Substitution lemma on judgements: Replace the assumption N : A with a proof
E which establishes N : A.

Disjunction Constructively, a proof of A ∨ B says that we have either a proof of A
or a proof of B. All possible proofs of A ∨ B can be described as a set containing
proofs of A and proofs of B. We can tag the elements in this set depending on whether
they prove A or B. Since A occurs in the left position of ∨, we tag elements denoting
a proof M of A with inlA M ; dually B occurs in the right position of ∨ and we tag
elements denoting a proof N of B with inrB N . Hence, the set of proofs for A ∨ B
contains inlA M1, . . . , inlA Mn, i.e. proofs for A, and inrB N1, . . . , inrB Nk„ i.e. proofs
for B. From a type-theory point of view, disjunctions correspond to disjoint sums,
often written as A + B. The introduction rules for disjunction correspond to the left
and right injection.

M : A
∨I l

inlA M : A ∨ B

N : B
∨Ir

inrB N : A ∨ B

We annotate inl and inr with the proposition A and B respectively. As a conse-
quence, every proof term correspond to a unique proposition; from a type-theoretic
perspective, it means every program has a unique type.
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The elimination rule for disjunctions corresponds to a case-construct which distin-
guishes between the left and right injection. To put it differently, know we have a proof
term for A ∨ B, we know it is either of the form inlA x where x is a proof for A or of
the form inrB y where y is a proof for B.

M : A ∨ B

u
x : A

...
Nl : C

v
y : B

...
Nr : C

∨Ex,u,y,v

case M of inlA x → Nl | inrB y → Nr : C

Note that the labelled hypothesis u which stands for the assumption x : A is only
available in the proof Nl for C. Similarly, labelled hypothesis v which stands for the
assumption y : B is only available in the proof Nr for C. This is also evident in the
proof term case M of inlA x → Nl | inrB y → Nr. The x is only available in Nl, but
cannot be used in Nr which lives within the scope of y.

As before (left to an exercise), the local soundness proof for disjunction gives rise
to the following two reduction rules:

case (inlA M) of inlA x → Nl | inrB y → Nr =⇒ [M/x]Nl

case (inrB M) of inlA x → Nl | inrB y → Nr =⇒ [M/y]Nr

Falsehood Recall that there is no introduction rule for falsehood (⊥). We can there-
fore view it as the empty type, often written as void or 0.

From a computation point of view, if we derived a contradiction, we abort the
computation. Since there are no elements of the empty type, we will never be able to
construct a value of type void; therefore, we will never be able to do any computation
with it. As a consequence, there is no reduction rule for abort.

M : ⊥ ⊥E
abortC M : C

To guarantee that abortC M has a unique type, we annotate it with the proposition
C.

Summary The previous discussion completes the proofs as programs interpretation
for propositional logic.
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Propositions Types
⊤ () or 0 Unit type
A ∧ B A × B Product type
A ⊃ B A → B Function type
A ∨ B A + B Disjoint sum type
⊥ void or 1 Empty type

The proof terms we introduced corresponds to the simply-typed lambda-calculus
with products, disjoint sums, unit and the empty type.

Terms M, N ::= x
| ⟨M, N⟩ | fst M | snd M
| λx:A.M | M N
| inlA M | inrB N | case M of inlA x → Nl | inrB y → Nr

| abortA M | ()

Remarkably, this relationship between propositions and types can be extended to
richer logics. As we will see, first-order logic gives rise to dependent types; second-
order logic gives rise to polymorphism and what is generally known as the calculus
System F. Adding fix-points to the logic corresponds to recursive data-types in pro-
gramming languages. Moving on to non-classical logics such as temporal logics their
computational interpretation provides a justification for and guarantees about reactive
programming; modal logics which distinguish between truths in our current world and
universal truths give rise to programming languages for mobile computing and staged
computation. The deep connection between logic, propositions and proofs on the one
hand and type theory, types, and programs on the other provides a rich and fascinating
framework for understanding programming languages, reduction strategies, and how
we reason in general.

3.2 Consequences of the Curry-Howard Isomorphism

3.2.1 Proof Normalization is Program Normalization
There are many lessons we can draw from the Curry-Howard isomorphism. Its signif-
icance for logic lies in the fact that we can study normal forms both on the levels of
proof terms which directly implies that the corresponding proof is also in normal form.

The natural deduction calculus admits “detours” in its proofs. For example, con-
sider the following proof for (A ∧ ((A ∧ A) ⊃ B)) ⊃ B.
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u
A ∧ (A ∧ A) ⊃ B true

∧El
(A ∧ A) ⊃ B true

v
A true

v
A true

∧I
A ∧ A true

⊃ E
B true

⊃v

A ⊃ B true

u
A ∧ (A ∧ A) ⊃ B true

∧Er
A true

⊃ E
B true

⊃ Iu

(A ∧ ((A ∧ A) ⊃ B)) ⊃ B true

This is a somewhat convoluted proof. In particular, it has a detour (i.e. e use
⊃ I followed by the ⊃ E rule) that seem unnecessary. We highlighted it in red in the
derivation. We also highlight that we are proving B true twice in the derivation. A
derivation without this detour would simply proceed as follows:

u
A ∧ (A ∧ A) ⊃ B true

∧El
(A ∧ A) ⊃ B true

u
A ∧ (A ∧ A) ⊃ B true

∧Er
A true

u
A ∧ (A ∧ A) ⊃ B true

∧Er
A true

∧I
A ∧ A true

⊃ E
B true

⊃ Iu

(A ∧ ((A ∧ A) ⊃ B)) ⊃ B true

Note that the height of the proof tree is smaller. The latter derivation is considered
normal, as it does not contain any “detours”.

How could we transform proof derivations into a normal form? And can we char-
acterize normal forms more precisely?

The Curry-Howard corresponds tells us:

1. If D : A true then M : A.

2. Local Soundness: If M : A and M =⇒ N then N : A.

3. If N : A then there exists a corresponding derivation E : A true. In particular the
derivation E is a derivation where we have no detours.

Hence, we can obtain a normal form by reducing the proof term. Let’s annotate the
first derivation. We will omit type annotations on λ-abstractions for ease of readability.
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u
x : A ∧ (A ∧ A) ⊃ B

∧El
snd x : (A ∧ A) ⊃ B

v
y : A

v
y : A

∧I
⟨y, y⟩ : A ∧ A

⊃ E
(snd x) ⟨y, y⟩ : B

⊃v

λy.(snd x) ⟨y, y⟩ : A ⊃ B

u
ptermx : A ∧ (A ∧ A) ⊃ B

u
fst x : A

⊃ E
λy.(snd x) ⟨y, y⟩ (fst x) : B

⊃ Iu

λx.(λy.(snd x) ⟨y, y⟩) (fst x) : (A ∧ ((A ∧ A) ⊃ B)) ⊃ B

We can now reduce λx.(λy.(snd x) ⟨y, y⟩) (fst x):

λx.(λy.(snd x) ⟨y, y⟩) (fst x) =⇒ λx.(snd x) ⟨(fst x), (fst x)⟩

By local soundness we know that

λx.(snd x) ⟨(fst x), (fst x)⟩ : (A ∧ ((A ∧ A) ⊃ B)) ⊃ B

Indeed, we can check that this is the case by annotating the alternative derivation
without detours that we gave earlier:

u
x : A ∧ (A ∧ A) ⊃ B

∧El
snd x : (A ∧ A) ⊃ B

u
x : A ∧ (A ∧ A) ⊃ B

∧Er
fst x : A

u
x : A ∧ (A ∧ A) ⊃ B

∧Er
fst x : A

∧I
⟨(fst x), (fst x)⟩ : A ∧ A

⊃ E
(snd x) ⟨(fst x), (fst x)⟩ : B

⊃ Iu

λx.(snd x) ⟨(fst x), (fst x)⟩ : (A ∧ ((A ∧ A) ⊃ B)) ⊃ B

As a consequence, we can study the problem of “normalization”, i.e. does there
exist a normal proof in the context of does there exist a normal form for proof terms.

In fact, we can very precisely define a normal form on the level of terms as follows:

Normal Terms M, N ::= λx:A.M | ⟨M, N⟩ | () | R
Neutral Terms R ::= x | fst R | snd R | R N

As we can see, a term λx:A.(λy:A.y) x is not valid normal term, because we have
a redex (λy:A.y) x which reduces to x. According to our grammar of normal and
neutral terms (λy:A.y) x is ill-formed. We will describe and study these normal terms
and normal derivations more in the next chapter. Fundamentally, focusing on the proof
terms and how they reduce to a normal form, can be used to prove strong normalization
of natural deduction, i.e., every derivation in the natural deduction can be translated
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to a normal derivation. In fact following Tait [?] a now standard way to prove this is
by defining reducibility candidates which describe sets of terms that are reducible at a
given type (proposition). We will postpone such a proof to later.

3.2.2 Propositions as Types
The significance of the Curry-Howard isomorphism is maybe even greater from a type
theory and programming languages perspective. Extensions of the natural deduction
calculus have direct counterparts in type theory and programming languages. In fact,
we can extend the previous table as follows:

Propositions Types
⊤ () or 0 Unit type
A ∧ B A × B Product type
A ⊃ B A → B Function type
A ∨ B A + B Disjoint sum type
⊥ void or 1 Empty type
∀x:τ.A Πx:τ.A Indexed (Dependent) Type (Π)
∃x:τ.A Σx:τ.A Indexed (Dependent) Type (Σ)
∀α:o.A ∀α.A Polymorphic Type

This correspondance extends to a variety of logics.

Logic (ND) Programming paradigm
Propositional logic Simply-typed functional programming
2nd-order logic Polymorphically typed functional program-

ming
first-order logic Indexed (Dependently-typed) functional pro-

gramming (see for example DML)
Modal Logic S4 Staged computation in functional program-

ming
Modal Logic S5 Distributed programming
LTL Reactive programming

We can also observe the isomorphism for sub-structural logics, i.e. logics where we
omit weakening and / or contraction. Furthermore, the Curry-Howard correspondence
also exists for the sequent calculus. In particular:

Logic (sequent calculus) Programming paradigm
Linear logic Concurrent Processes
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Rather than adding features in an ad-hoc manner to a given language, we can study
computational features in a systematic way by developing logical foundations grounded
in the Curry-Howard isomorphism.

3.2.3 Curry-Howard’s Influence on the Theory of Programming Lan-
guages

We have already seen that reductions of proof terms preserves the provability of a given
proposition.

In particular:

Theorem 3.2.1 (Local Soundness aka Subject Reduction or Type Preservation).
If M : A and M =⇒ N then N : A.

This property is well-know in the theory of programming language under the name
“Subject Reduction” or “Type Preservation”. It is one part of the mantra of establishing
that a language is type-safe going back to Felleisen and Wright.

Theorem 3.2.2 (Type Safety).

1. Type Preservation: If M : A and M =⇒ N then N : A

2. Progress: If M : A then either M is a normal form or we can take a step, i.e
there exists a term N s.t. M =⇒ N .

3.2.4 Proofs as Programs
One important consequence of the relationship between a proof and a well-typed pro-
gram, is that instead of constructing a derivation for a proposition A, we simply write
a program of type A. By the Curry-Howard isomorphism, this program will be correct
by construction!

As computer scientists, we are familiar with writing programs, maybe more than
writing proof derivations. It is often also a lot more compact and less time consuming,
to directly write the program corresponding to a given type A. We can then simply
check that the program has type A, which boils down to constructing the proof tree
which establishes that A is true. The good news is that such proof checking can be
easily implemented by a small trusted type checker, a program of a few lines.

We’ve already seen some simple programs, such as the identity function, or the
function which given a pair returns the first or second projection of it. Let’s practice
some more.
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Function composition The proposition ((A ⊃ B) ∧ (B ⊃ C)) ⊃ A ⊃ C can be read
computationally as function composition. Given a pair of functions, where the first
element is a function f : A ⊃ B and the second element is a function g : B ⊃ C, we
can construct a function of type A ⊃ C, by assuming x:A, and then first feeding it to
f , and passing the result of fx to g, i.e. returning a function λx:A.g (f x).

Since our language does not use pattern matching to access the first and second
element of a pair, we write fst u instead of f and snd u instead of g, where u denotes
the assumption (A ⊃ B)∧ (B ⊃ C).

Given this reasoning, we can write function composition as

λu:(A ⊃ B)∧ (B ⊃ C).λx:A.snd u ((fst u) x)

This gives rise to two readings for M : A.

1. If A true then there exists a proof term M for this exact derivation s.t. M : A.
(Generate Proof Witness)

2. If M and M : A (M is well-typed) then there exists a proof derivation A true.
(Proof Checking)

3.2.5 Type Theory: A Foundation for Formalized Mathematics
The Curry-Howard correspondance is particular pronounced in type theories, such as
Martin-öf Type Theory or the (inductive) Calculus of Construction. These system ex-
tend the correspondance to richer types (propositions) called dependent types, include
inductive types, and equality. They also include a full universe hierarchy to avoid
Russel’s paradox.

What is important is that these type theories are implemented in proof assistants
such as Rocq, Lean, and Agda. In particular in Agda, we write proofs as programs.
Even in Lean and Rocq we often write programs that constitute proofs.

These proof assistants have been used widely for verifying software and mathe-
matics. A milestone in verifying safety-critical software has been the Compcert Com-
piler [Leroy(2009a), Leroy(2009b)]). Proof assistants, in particular Rocq and Lean have
also been used to formalize a significant portion of mathematics with the goal of estab-
lishing a new standard of rigor [Avigad and Harrison(2014)] in this field. For example,
MathLib [The Mathlib Community(2020)] in the Lean proof assistant has roughly half
a million lines of code, and contains formalizations of many nontrivial mathematics,
from number theory to perfectoid spaces [Buzzard et al.(2020)Buzzard, Commelin, and Massot].
These endeavors are testimony to the success of proof assistants in practice.
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Γ ⊢ M : A Γ ⊢ N : B
Γ ⊢ ⟨M, N⟩ : A ∧ B

∧I Γ ⊢ fst M : A ∧ B
Γ ⊢ M : A

∧El
Γ ⊢ snd M : A ∧ B

Γ ⊢ M : B
∧Er

Γ, u:A ⊢ M : B

Γ ⊢ λu:A.M : A ⊃ B
⊃ Iu Γ ⊢ M : A ⊃ B Γ ⊢ N : A

Γ ⊢ M N : B
⊃ E

Γ ⊢ N : A

Γ ⊢ inlB N : A ∨ B
∨Il

Γ ⊢ N : B
Γ ⊢ inrA N : A ∨ B

∨Ir

Γ ⊢ M : A ∨ B Γ, u : A ⊢ Nl : C Γ, v : B ⊢ Nr : C

Γ ⊢ case M of inlu B → Nl | inrv A → Nr : C
∨Eu,v

Γ ⊢ () : ⊤ ⊤I Γ ⊢ abortC M : ⊥
Γ ⊢ M : C

⊥E
u : A ∈ Γ
Γ ⊢ u : A

u

Γ, a:τ ⊢ M : A(a)

Γ ⊢ λa : τ.M : ∀x:τ.A(x)
∀Ia

Γ ⊢ M : ∀x:τ.A(x) Γ ⊢ t:τ

Γ ⊢ M t : A(t)
∀E

Γ ⊢ M : A(t) Γ ⊢ t:τ

Γ ⊢ ⟨M, t⟩ : ∃x:τ.A(x)
∃I

Γ ⊢ M : ∃x:τ.A(x) Γ, a:τ, u:A(a) ⊢ N : C

Γ ⊢ let ⟨u, a⟩ = M in N : C
∃Eau

Figure 3.1: Summary of typing rules

3.3 Meta-theoretic properties
We consider here additional properties of the proof terms, typing and reductions. For
this discussion it is useful to have all the typing and reduction rules in one place.

If we look back at our reduction rules we notice that reduction does not always take
place at the top-level. A redex, i.e. a term which matches one of the left hand sides of
our reduction rules, may be embedded in a given term. For example, we may want to
evaluate:

λy:A.⟨( λx:A.x)y, y⟩

Here the redex ( λx:A.x)y is burried underneath a lambda-abstraction and a pair.
In order to allow reduction of a redex which is not at the top-level, we need to intro-
duce additional reduction rules for M =⇒ M ′ allowing us to get to the redex inside
another term. This is accomplished by so-called congruence rules. Note our congru-
ence rules are non-deterministic; they also reduce under a lambda-abstraction. Both of
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these characteristics may not be wanted if we are to define a determinstic call-by-value
evaluation strategy. However, at this point, we retain as much flexibility as possible.

3.3.1 Subject reduction
We prove here a key property: Subject reduction.

Theorem 3.3.1. If M =⇒ M ′ and Γ ⊢ M : C then Γ ⊢ M ′ : C.

Proof. By structural induction on M =⇒ M ′.
The reduction rules for each redex form the base cases in the proof. We consider

here the rule for reducing (λx:A.M) N one as an example.

Case D = (λx:A.M) N =⇒ [N/x]M
Γ ⊢ (λx:A.M) N : C by assumption
Γ ⊢ λx:A.M : A ′ ⊃ C
Γ ⊢ N : A ′ by rule ⊃ E
Γ, x : A ⊢ M : C and A = A ′ by rule ⊃ Ix

Γ ⊢ [N/x]M : C by substitution lemma

We next consider a representative from the step cases which arise due to the con-
gruence rules.

Case D =

D ′

M =⇒ M ′

λx:A.M =⇒ λx:A.M ′

Γ ⊢ λx:A.M : C by assumption
Γ, x : A ⊢ M : B and C = A ⊃ B by rule ⊃ Ix

Γ, x : A ⊢ M ′ : B by i.h. on D ′

Γ ⊢ λx:A.M ′ : A ⊃ B by rule ⊃ Ix

3.3.2 Equivalence of Proof Systems
We have so far described the elimination rules for conjunction using the projections
fst and snd to extract each component of a pair.
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Reduction rules for redexes

fst ⟨M, N⟩ =⇒ M
snd ⟨M, N⟩ =⇒ N
(λx:A.M) N =⇒ [N/x]M
case (inlA M) of inlA x → Nl | inrB y → Nr =⇒ [M/x]Nl

case (inrB M) of inlA x → Nl | inrB y → Nr =⇒ [M/y]Nr

(λa:τ.M) t =⇒ [t/a]M
let ⟨u, a⟩ = ⟨M, t⟩ in N =⇒ [M/u][t/a]M

Congruence rules

M =⇒ M ′

⟨M, N⟩ =⇒ ⟨M ′, N⟩
N =⇒ N ′

⟨M, N⟩ =⇒ ⟨M, N ′⟩
M =⇒ M ′

fst M =⇒ fst M ′
M =⇒ M ′

snd M =⇒ snd M ′

M =⇒ M ′

λx:A.M =⇒ λx:A.M ′
M =⇒ M ′

M N =⇒ M ′ N

N =⇒ N ′

M N =⇒ M N ′

M =⇒ M ′

inlB M =⇒ inlB M ′

M =⇒ M ′

inrA M =⇒ inrA M ′

M =⇒ M ′

case M of inlB u → Nl | inrA v → Nr =⇒ case M ′ of inlB u → Nl | inrA v → Nr

Nl =⇒ N ′
l

case M of inlB u → Nl | inrA v → Nr =⇒ case M of inlB u → N ′
l | inrA v → Nr

Nr =⇒ N ′
r

case M of inlB u → Nl | inrA v → Nr =⇒ case M of inlB u → N ′
l | inrA v → N ′

r

Figure 3.2: Summary of reduction rules
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M : A N : B
∧I

⟨M, N⟩ : A ∧ B

M : A ∧ B
∧Elfst M : A

M : A ∧ B
∧Ersnd M : B

However, we might also be able to think of using a different rule for conjunction
elimination:

M : A ∧ B

u
x : A

v
y : B

...
N : C

∧E−let
let ⟨x, y⟩ = M in N : C

Let’s look at a few examples and compare the proof terms:

Proposition Proof term using projections Proof term using let
(A ∧ B) ⊃ (B ∧ A) λx.⟨snd x, fst x⟩ λx.let ⟨a, b⟩ = x in ⟨b, a⟩
((A ⊃ B)∧ A) ⊃ B λx.(fst x) (snd x) λx.let ⟨a, b⟩ = x in a b

How can we translate between proof terms that use a let-expression to one that
uses only projections? - One might view this as compiling a term that contains a let-
expression (source term) to a term that only contains projectsion (target term). By
giving such a translation between terms, we also obtain at the same time a translation
of proofs from the system that uses the elimination rule ∧E−let to the one that uses
∧El and ∧Er to

For clarity, we keep the source language separate from the target language and we
will use different variables. For the target language we will use T , while we stick to
using M or N for the source language.

Source Language M, N := x | ⟨M, N⟩ | let ⟨x, y⟩ = M in N | . . .
Target Language T := x | ⟨T1, T2⟩ | fst T | snd T | . . .

We define here the translation from a language with let-expression using a function
( )− which takes a source term or a context of source variables and translates it to its
corresponding target term or target context. The translation is defined inductively on
the structure of source terms and source contexts, resp.
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(x)− = x
(⟨M, N⟩)− = ⟨T1, T2⟩ T1 = (M)− and T2 = (N)−

(let ⟨x, y⟩ = M in N)− = [fst T1/x, snd T1/y]T2 T1 = (M)− and T2 = (N)−

(·)− = ·
(Γ, x : A)− = (Γ )−, x : A

The translation of contexts might seem unnecessary and indeed it is pedantic.
Morally, the variables in Γ describe source variables and the variables in (Γ )− de-
scribe target variables. While we have used the same variable names for both source
and target variables, they belong to different languages. The explicit copy of Γ makes
this clear.

How can we show that provability is preserved, i.e. if M : A in the system with
∧E−let then there must be a corresponding proof T : A in the system with ∧El and
∧Er. Note that as we translate M and construct the proof M : A, we reason by
assumptions.

Theorem 3.3.2. If Γ ⊢ M : A then (Γ )− ⊢ (M)− : A.

Proof. Induction on the typing derivation Γ ⊢ M : A.

Case D =

D1

Γ ⊢ M : A ∧ B
D2

Γ, x : A, y : B ⊢ N : C
∧E−let

Γ ⊢ let ⟨x, y⟩ = M in N : C

(Γ )− ⊢ (M)− : A ∧ B by IH on D1

(Γ )− ⊢ fst (M)− : A by ∧El

(Γ )− ⊢ snd (M)− : A by ∧Er

((Γ, x : A, y : B))− ⊢ (N)− : C by IH on D2

(Γ )−, x : A, y : B ⊢ (N)− : C by definition of ( )−
(Γ )− ⊢ [fst (M)−/x, snd (M)−/y]((N)−) : C by substitution lemma
(Γ )− ⊢ (let ⟨x, y⟩ = M in N)− : C by definition of ( )−

Case D =

D1

Γ ⊢ M : A
D2

Γ ⊢ N : B
∧I

Γ ⊢ ⟨M, N⟩ : A ∧ B

(Γ )− ⊢ (M)− : A by IH D1
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(Γ )− ⊢ (N)− : B by IH D1

(Γ )− ⊢ ⟨(M)−, (N)−⟩ : A ∧ B by ∧I
(Γ )− ⊢ (⟨M, N⟩)− : A ∧ B by definition of ( )−.

3.4 Exercises

Exercise 3.4.1. We mentioned that there is an alternative formulation for eliminating
a conjunction that incorporates a light form of pattern matching.

However, we might also be able to think of using a different rule for conjunction
elimination while keeping the introduction form for conjunction.

M : A N : B
∧I

⟨M, N⟩ : A ∧ B

M : A ∧ B

u
x : A

v
y : B

...
N : C

∧E−let
let ⟨x, y⟩ = M in N : C

• Reformulate these rules with local contexts

• Show local soundness and derive the corresponding reduction rule.
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