
Introduction to Logical Foundations — Brigitte Pientka

Lecture 1 - June 23, 2025

This lecture gives an introduction to constructive logic, focusing on Gentzen’s natural deduction,
a particular logical system designed to be more modular than the Hilbert-style “list of axioms.” In
order to understand the Curry-Howard isomorphism, we begin with exploring connections between
proofs and propositions, as well as types and programs.

1 Propositions

To talk about natural deduction, we first need to define what a proposition is.

Definition 1.1 (Inductive Definition of Well-Formed Proposition). A proposition is one of the
following:1

• ⊤ (true) is a proposition

• if A,B are propositions, then so are A ∧B, A ∨B, A ⊃ B

We use A,B,C to range over propositions. In BNF form, it would be defined as:

Proposition A,B,C := ⊤ | A ∧B | A ∨B | A ⊃ B.

To give meaning to such propositions, let’s now look at a judgmental view of propositions.

A quote from Per Martin-Löf: “The idea is that the analytical, or explicative, judgements are those
that become evident merely by conceptual analysis, that is, they are those whose evidence rests on
conceptual analysis alone.” [2]

1For simplicity of exposition, we are not including a false proposition. However, when we use metavariables A,B
variables for propositions, we will not make any assumptions about it being some particular piece of syntax other
than just the symbols A or B. Thus, it makes sense to say “we cannot prove A ⊃ B”, even though (because we did
not include a false proposition) we will be able to prove A ⊃ X for every concrete piece of syntax X generated by
our grammar.
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To illustrate this idea with some further details, Martin-Löf uses an example of weather and a
thermometer displaying 25 degrees in [2].

Consider the judgment “It is raining.” Martin-Löf shows that the nature of this judgment depends
critically on what evidence we consider:

• Synthetic judgment: If we treat “It is raining” as a standalone linguistic utterance, then
no amount of conceptual analysis can establish its truth. To verify this judgment, we must
appeal to external evidence—either direct observation of falling rain or some indirect evidence.
The judgment is synthetic because its truth depends on empirical facts beyond the linguistic
expression itself.

• Analytic judgment: However, if we consider the complete complex consisting of both the
linguistic part (“It is raining”) and the nonlinguistic part (the actual falling rain), then the
judgment becomes analytic. Everything needed to verify the judgment is contained within
this complex—no additional evidence is required.

The temperature example of having a thermometer displaying 25 degrees follows the same pattern:

• The judgment “The temperature is +25°C” is synthetic, not analytic when considered as
a mere verbal expression. Analyzing the concepts involved cannot establish its truth.

• When we consider the judgment together with the thermometer reading +25°C, the complete
complex becomes analytic. All necessary evidence is present within the complex itself.

For the scope of this lecture, we are mainly concerned with analytical judgements.

In general, an (analytic) judgment in the form A wf defines when a proposition is well-formed.
It is defined by a set of inference rules, which have the general form

J1 . . .Jn

J

where J1 . . .Jn are the premises and J is the conclusion.

We introduce the judgment A wf, saying that proposition A is “well-formed” (i.e., syntactically
valid), which we define by the following rules:

⊤ wf

A wf B wf

A op B wf
(op ∈ {∧,∨,⊃})
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2 Natural deduction

We introduce the judgment A true . To define A true , we will use both

• introduction rule, which introduces a connective on the bottom, denoted by I.

• elimination rule, saying how to obtain information from a given connective, denoted by E.

The proposition ⊤ should always be true. Resultantly, the judgement ⊤ true is true holds uncon-
ditionally and has no premises.

⊤ true
⊤I

A true B true

A ∧B true
∧ I

A ∧B true

A true
∧ El

A ∧B true

B true
∧ Er

Here are some examples of using these rules to build proofs. Here is a proof of ⊤∧ (⊤∧⊤), and a
sketch of proof of B starting from A ∧ (B ∧ C).

⊤ true
⊤I

⊤ true
⊤I

⊤ true
⊤I

⊤ ∧⊤ true
∧ I

⊤ ∧ (⊤ ∧⊤) true
∧ I

A ∧ (B ∧ C) true

B ∧ C true
∧ Er

B true
∧ El

The second example, of course, is not fully complete nor valid: there’s currently no rule that gave us
A∧ (B∧C) true and it is currently unjustified. Instead, we’re trying to do hypothetical reasoning,
saying, if we knew A ∧ (B ∧ C), then we could derive B.

2.1 Hypothetical Derivation and Reasoning

From the second example above, what we are really trying to do is, given A ∧ (B ∧C) true as an
assumption, we aim to prove that B true. Written in the proposition form, we’d like to prove the
implication A ∧ (B ∧ C) ⊃ B.

Generally speaking, we might have more than one assumption. Therefore, the hypothetical deriva-
tions have the form as follows:
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H1J1 · · · HnJn
...
J

This is to say, we can derive J given the assumptions J1 . . . Jn. We don’t claim that we can prove
J1 . . . Jn.

Substitution Principle These assumptions are unproven, and one we can build a derivation for
any Ji, we can ”plug” such derivations into the corresponding places in the derivation tree and
eliminate usage of the assumptive version of Ji by referring to the actual derivations we built. This
is also known as the substitution principle for hypothesis.

Implication Using notions of hypothetical judgements, we can now explain the meaning of A ⊃ B
(A implies B), as implications already internalizes hypothetical reasoning. Similarly, we introduce
rules for implications:

A true
u

...
B true

A ⊃ B true
⊃ Iu

A ⊃ B true A true

B true
⊃ E

Scoping The label u denotes the assumption A true . Referring to this label again at the
bottom of the inference rule with the name clarifies the scope of assumption u: We make an
assumption u to prove B true only and then discharge it once the proof is done. In this way, the
assumptions are delimited with their scopes and we cannot use them outside of such borders. This
also follows Gentzen’s top-down notation for natural deduction[1].

Now we can complete our previous example in the following way:

A ∧ (B ∧ C) true
(u)

B ∧ C true
∧ Er

B true
∧ El

A ∧ (B ∧ C) ⊃ B true
⊃ Iu

Structural Laws Assumptions have the following properties, which we call structural laws.
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• Weakening: Assumptions don’t have to be used, and additional unused assumptions do no
harm.

This is used, for instance, in proving A ⊃ B ⊃ A true (which we implicitly take to mean
A ⊃ (B ⊃ A)).

• Contraction: Assumptions can be used as often as you like, not only once.

This is used, for instance, in proving A ⊃ (A ∧A) true.

3 Natural deduction with contexts

As presented above, assumptions are somewhat odd / cumbersome to formalize. We’ll rephrase
our natural deduction system by adding contexts, to make assumptions more explicit. We define

Context Γ := · | Γ, x : A true

where x is any name / identifier. We think of Γ as a set of assumptions.

Our new truth judgment is now Γ ⊢ A true. Our rules turn into the following:

Γ ⊢ ⊤ true
⊤I

Γ ⊢ A true Γ ⊢ B true

Γ ⊢ A ∧B true
∧ I

Γ ⊢ A ∧B true

Γ ⊢ A true
∧ El

Γ ⊢ A ∧B true

Γ ⊢ B true
∧ Er

and our new rules for implication become

Γ, u : A true ⊢ B true

Γ ⊢ A ⊃ B true
⊃ Iu

Γ ⊢ A ⊃ B true Γ ⊢ A true

Γ ⊢ B true
⊃ E

(u : A true) ∈ Γ

Γ ⊢ A true
(u)

Now, rather than trying to state what the properties of assumptions ought to be in words, we can
write down these properties formally, and then prove that they hold, using induction:

• Weakening: if Γ,Γ′ ⊢ A true, then Γ, u : B true,Γ′ ⊢ A true

• Contraction: if Γ, x : B true, y : B true,Γ′ ⊢ A true, then Γ, x : B true,Γ′ ⊢ A true

• Substitution: if Γ, x : A true,Γ′ ⊢ B true, and Γ ⊢ A true, then Γ,Γ′ ⊢ B true
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4 Local Soundness and Local Completeness

Now we turn to the question of how we know we have the right rules. We will split this into
two criteria: local soundness and local completeness. These are purely proof-theoretic criteria,
rather than depending on some chosen specific semantics for the logic. We aim to choose a proper
combination of introduction and elimination rules, so that they will meet certain conditions:

• Soundness: They should not allow us to deduce unintended new truths

• Completeness: They should be strong enough to seek out all the information contained in
the given connectives.

To give a more relevant picture:

• Local Soundness: If we introduce a connective and then immediately eliminate it, we should
be able to delete this detour completely and obtain a direct derivation ending up with the
exact same conclusion.

If this property does not hold, then the elimination rules are too strong. (They allow us to
derive more information than it should be).

• Local Completeness: If we start with a compound formula (built on connectives), we can
eliminate a connective in a way that it still keeps sufficient information to reconstruct the
connective by an introduction rule. The key idea is that we should always be able to rebuild
(using introduction) what we started with using just the pieces we get from elimination.

If this property does not hold, then the elimination rules are too weak: they do not allow us
to obtain everything we should be able to and we are losing information in this process.

Both of these notions fit into the idea of transforming a proof of a proposition into an intuitively
“simpler” proof of that proposition. Using ∧ as an example:

• Suppose the proposition P does not contain ∧. You could still use ∧I and ∧E in its proof,
but it would be simpler if a proof of P only involves the connectives in P .

Local soundness shows how to simplify a proof in this way, when ∧I and ∧E occur right next
to each other (rather than maybe occurring far away from each other in the proof—this is
what “local” is referring to).

• Suppose P has the form P1 ∧ P2. It would be simplest to prove it using ∧I as the last rule,
though of course, it is not necessary.

Local completeness shows how to transform any proof of P1∧P2 into one whose final (bottom-
most) proof rule is ∧I.
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4.1 Local soundness

Local soundness captures the intuitive idea that the combination of introduction rules and elim-
ination rules is not too strong : that is, they don’t allow us to infer more than we already know.
Concretely, if we apply an elimination rule immediately to an introduction rule, we should be able
to simplify it.

For example, if we start with the left hand side, we can simplify it to the right:

D
Γ ⊢ A true

Γ ⊢ B true

Γ ⊢ A ∧B true
∧ I

Γ ⊢ A true
∧ El

D
Γ ⊢ A true

and symmetrically for the other elimination rule, ∧Er.

For implication, given the left, we can make the right using substitution:

Γ, u : A true ⊢ B true

Γ ⊢ A ⊃ B true
∧ Iu Γ ⊢ A true

Γ ⊢ B true
⊃ E

. . .

Γ ⊢ B true

The trivially true proposition ⊤ has no elimination rules, so local soundness for ⊤ is trivial.

You can see that it is unnecessary to first introduce a conjunction and then immediately eliminate
it, since we can discover a more direct proof already. Therefore, it’s possible that many different
proofs for a same proposition can be collapsed to a more direct proof without the detour. Such
proof collapsing process is referred as normalisation (or trying to find the normal form of a proof).

4.2 Local Completeness

Local completeness captures the intuitive idea that the combination of intro and elim rules is strong
enough. Concretely, we would like to know that whenever we can prove some connective, then we
could just as well prove it using the introduction rule as our last rule. (This shows that the intro
rule is strong enough to prove anything that can be proved.)
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For ∧, if we have the left, we can expand it to the right thing:

D
Γ ⊢ A ∧B true

D
Γ ⊢ A ∧B true

Γ ⊢ A true
∧ El

D
Γ ⊢ A ∧B true

Γ ⊢ B true
∧ Er

Γ ⊢ A ∧B true
∧ I

and for ⊃, given the first, we can make the second using weakening:

D
Γ ⊢ A ⊃ B true

. . .

Γ, x : A true ⊢ A ⊃ B true Γ, x : A true ⊢ A true

Γ, x : A true ⊢ B true
⊃ E

Γ ⊢ A ⊃ B true
⊃ Ix
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