

Introduction to Logical Foundations — Brigitte Pientka

Lecture 3 - A Judgmental Reconstruction of Modal Logic (S4) June 25, 2025

Slogan: Truth is living in the moment - here and now; validity is living forever and everywhere.

1 Modal logic

Definition (Necessity Modality $(\Box A)$). For proposition A, $\Box A$ can be read as "A is necessarily true". Definition (Validity).

- If $\cdot \vdash A$ true then A valid.
- If A valid then $\Gamma \vdash A$ true. (weakening)

2 Judgment anatomy

A judgment looks like

 $\Delta; \Gamma \vdash A \text{ true}$

where

- Δ contains "global" assumptions which are valid "forever". Looks like $x_1:A_1$ valid, ..., $x_n:A_n$ valid
- Γ contains "local" assumptions which are valid "here and now". Looks like $y_1: B_1$ true, ..., $y_m: B_m$ true

3 Hypothesis rules

$$\frac{x:A\;\mathsf{true}\in\Gamma}{\Delta;\Gamma\vdash A\;\mathsf{true}} \qquad \frac{x:A\;\mathsf{valid}\in\Delta}{\Delta;\Gamma\vdash A\;\mathsf{true}}$$

$$\frac{\Delta;\cdot\vdash A\;\mathsf{true}}{\Delta:\Gamma\vdash \Box A\;\mathsf{true}}\Box I \qquad \frac{\Delta;\Gamma\vdash \Box A\;\mathsf{true}\;\;\Delta,u:A\;\mathsf{valid};\Gamma\vdash C\;\mathsf{true}}{\Delta:\Gamma\vdash C\;\mathsf{true}}\Box E$$

3.1 Old and bad

Here's an old version of the box introduction rule that doesn't work so well, actually:

$$\frac{\Box\Gamma \vdash A}{\Box\Gamma, \Gamma' \vdash \Box A}$$

This is from Prawitx '65. Unfortunately, it is not locally complete.

4 Local soundness / completeness

We want to show that both $\Box I$ and $\Box E^u$ are locally sound and complete.

$$\begin{array}{c|c} \mathcal{D} \\ \underline{\Delta; \Gamma \vdash \Delta \text{ true}} & \mathcal{E} \\ \hline \Delta; \Gamma \vdash \Box A \text{ true} & \Delta, u : A \text{ valid}; \Gamma \vdash C \text{ true} \\ \hline \Delta; \Gamma \vdash C \text{ true} & \Box E^u \\ \hline \end{array} \Longrightarrow \Delta; \Gamma \vdash C \text{ true}$$

Lemma (Substitution Lemma). If $\Delta; \Gamma, A$ true $\vdash C$ true and $\Delta; \Gamma \vdash A$ true, then $\Delta; \Gamma \vdash C$ true.

Lemma (Modal Substitution). If $(\Delta, y : A \text{ valid})$; $\Gamma \vdash C \text{ true } and \ \Delta$; $\cdot \vdash A \text{ true}$, then Δ ; $\Gamma \vdash C \text{ true}$

5 Properties

• Reflexivity: $\Box A \supset A$

• Distributivity: $\Box(A \supset B) \supset \Box A \supset \Box B$

• Transitivity: $\Box A \supset \Box \Box A$

5.1 Reflexivity proof

$$\cfrac{\cdot; x: \Box A \; \mathsf{true}}{x} \, \cfrac{x}{\cdot; y: A \; \mathsf{valid}; x: \Box A \; \mathsf{true} \vdash A \; \mathsf{true}}{y} \\ \cfrac{\cdot; x: \Box A \; \mathsf{true} \vdash A \; \mathsf{true}}{\cdot; \cdot \vdash \Box A \supset A \; \mathsf{true}} \supset I^x$$

5.2 Transitivity proof

6 Actual Modal Logic Grammar

Terms $M := x \mid \lambda x : A.M \mid M \mid N \mid \langle M, N \rangle \mid \text{fst } M \mid \text{snd } M \mid u \mid \text{box } M$ where u is for valid assumptions.

7 Real rules

$$\frac{y:A\;\mathsf{true}\in\Gamma}{\Delta;\Gamma\vdash y:A} \qquad \frac{u:A\;\mathsf{valid}\in\Delta}{\Delta;\Gamma\vdash u:A}$$

$$\frac{\Delta;\Gamma\vdash M:A}{\Delta;\Gamma\vdash\mathsf{box}\;M:\Box A}\;\Box I \qquad \frac{\Delta;\Gamma\vdash M:\Box A\;\;(\Delta;u:A\;\mathsf{valid});\Gamma\vdash N:C}{\Delta;\Gamma\vdash\mathsf{let}\;\mathsf{box}\;u=M\;\mathsf{in}\;N:C}\;\Box E$$

7.1 Completeness of elim

$$\frac{TODO}{ \Delta; \Gamma \vdash M : \Box A} \quad \begin{array}{c} \mathcal{E} \\ \hline \Delta; \Gamma \vdash M : \Box A \end{array} \quad (\Delta; u : A \text{ valid}); \Gamma \vdash N : C \\ \hline \Delta; \Gamma \vdash \text{let box } u = M \text{ in } N : C \end{array} \Box E$$

7.2 Substitution

We now have a need to differentiate between different kinds of substitution:

$$[M/x] \ N$$

$$[M/x] \ (\text{box } N) = \text{box } N$$

$$[M/u] \ (\text{box } N) = \text{box } ([M/u] \ N)$$

7.3 Example function

Here is a definition of a function that takes in an int n and a vector of booleans, and outputs the nth boolean in the vector.

$$\begin{aligned} &\mathsf{nth}: \mathsf{int} \to \Box(\mathsf{bool_vec} \to \mathsf{bool}) \\ &\mathsf{nth}\ 0 = \Box(\mathsf{fun}\ v \to \mathsf{hd}\ v) \\ &\mathsf{nth}\ (s\ n) = (\mathsf{let}\ \mathsf{box}\ r = \mathsf{nth}\ n\ \mathsf{in}\ \mathsf{box}\ (\mathsf{fun}\ v \to r(\mathsf{tl}\ v))) \end{aligned}$$

7.4 Updated definition

Definition (Validity). Our definition of validity has changed for our updated system: If $\Psi \vdash A$ true then A valid wrt Ψ

7.5 Contextual types

If we have a function fun $x \to \bigcirc + x$, the type of the function is $int \to int$, and the type of the hole, interestingly, is $x : int \Vdash int$, which means that we are allowed to use x and not just int literals.