
Contextual Modal Type Theory — Brigitte Pientka
Lecture 4 - June 26, 2025

1 Notations

As discussed in the previous lecture, the following notations are used:

• 2A : A is necessarily true / A is valid

• ∆ : context of ‘global’ valid assumptions, ‘live forever’, {A1 : valid, . . . , An : valid}

• Γ : context of ‘local’ true assumptions, ‘live here and now’, {A1 : true, . . . , An : true}

2 Contextual Types

2.1 Intro to contextual types

• We’ll examine a common example from natural deduction:

x : A ⊃ B ⊃ C, y : A ∧B ` : B ⊃ C

• Usually, we would like to fill the hole by applying proj1B to A to get B ⊃ C

• However, here is not necessarily closed

• The idea of contextual type is to pair the context (here is x : A ⊃ B ⊃ C, y : A∧B) with the
conclusion (here is B ⊃ C)[1]

• Think about when we type check the following:

x : int ` + 1 : int
· ` λx. + 1 : int (1)

• We know that stands for int in the context of x : int

1



Contextual Modal Type Theory Brigitte Pientka

Types/Props A := . . . |2(Ψ  A)
We can read Ψ  A as “pair the context Ψ with the conclusion A”.

Terms M := . . . | box (Ψ,M)

Some possible inhabitants of given example 1:

• 0

– A note: the term box (x : int, 0) has type 2(x : int  int)

• x (because we already have that x : int)

• x ∗ x

Takeaway: we have a typing derivation that we haven’t yet finished, represented by our s.
Thus we refer to the conclusion to infer the contextual type.

2.2 Contextual rule rewrites

∆;Ψ ` M : A

∆;Γ ` box (Ψ,M) : 2(Ψ  A) (2I)

∆; Γ ` M : 2(Ψ  A) (∆, u : (Ψ  A)); Γ ` N

∆;Γ ` let box u = M in N : C (2E)

x : Atrue ∈ Γ

∆;Γ ` x : A

u : (Ψ  A) ∈ ∆ ∆;Γ ` σ : Ψ

∆; Γ ` clo (u, σ) : A

We define the relation between Ψ and Γ by providing witnesses:
in equation ∆;Γ ` σ : Ψ,

• σ = M1/x1, . . . ,Mn/xn

• Ψ = x1 : A1true, . . . , xn : Antrue

where ∆;Γ ` Mi : Ai.

In more formal terms,

∆;Γ ` σ : Ψ ∆; Γ ` M : A

∆;Γ ` (σ,M/x) : Ψ, x : A

In essence, Ψ is the domain, Γ is the range, and σ is a mapping from Ψ −→ Γ. We provide
instantiations for all x ∈ Ψ, then make sure that all of these instantiations make sense in Γ.
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Intuitively, doesn’t it make sense that 2(x : A, y : B  C) is “equivalent” to 2(A ⊃ B ⊃ C)? A
small derivation:

∆;x : A, y : B ` . . . C

∆;x : A ` . . . B ⊃ C

∆; · ` . . . : A ⊃ B ⊃ C

∆;Γ ` . . . : 2A ⊃ B ⊃ C

3 Comparing contextual and non-contextual types

3.1 Example 1: implication chains

Type: 2(C ⊃ A) ⊃ 2(C ⊃ D ⊃ A)

Term: λx : 2(C ⊃ A).let box u = x in box (λy : C.λx : D. u y) (where u = C ⊃ A valid)

We can see that our box holds instructions followed by a function application: u applied to y.

Now using contextual types:
Type: 2(x′ : C  A) ⊃ 2(y : C, x : D  A)

Term:
λx : 2(x′ : C  A). let box u = x in box (y : C, x : D. clo (u, y/x′)) (where u = (x′ : C  A))

In this example, we turn x′s into ys using a closure (clo) instead of a function application. Closures
fire much sooner than function applications, which we’ll explore more in the following example.

3.2 Example 2: nth function

Rewriting our nth function from the previous lecture, we have type signature

nth : int −→ 2(v : bool_vec  bool)

where

nth 0 = box (v : bool_vec, hd v)

nth (suc n) = let box u = nth n in box (v : bool_vec, clo (u, tl v)).

Let’s evaluate an example, nth 2:

nth 2 −→ let box u = nth 1 in box (v : bool_vec, clo (u, tl v/v1))
nth 1 −→ let box u = nth 0 in box (v : bool_vec, clo (u, tl v/v0))

−→ let box u = box (v0, hd v0) in box (v : bool_vec, clo (u, tl v/v0))
−→ box (v, clo (hd v0, tl v/v0))
−→ box (v.hd(tl v))
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We can see that our contextual-typed version is eager, thus giving us the expected answer that
our lazy function-evaluated nth function failed to show in the previous lecture. Functions evaluate
once they have all of the information; contextual types treat arguments like syntax and splice until
they get the most simplified result.

• Substitution for “local” variables: [M/x]x = M

• Modal substitution for global variables: J(Ψ.M)/uKclo (u, σ) = [σ]M

One example of where this is used is in simplifying expressions like box (fn x → x + (x + 0)). We
want our program to continue to analyze this expression, resulting in the simpler box (fn x → x+x).
However, the program can’t evaluate because we don’t have a value of x provided. Thus, we use
syntax manipulation - (x+ 0) is itself a contextual type.

4 Another view: “quote and splice”

In the Kripke-like “quote and splice” view, we have expressions like

Γ1; . . . ; Γn ` M : A

and rules like
−→
Γ ; Γ; · ` M : A

−→
Γ ; Γ ` 2M : 2A

−→
Γ ; Γ ` M : 2A

−→
Γ ; Γi; . . . ; Γn ` unboxnM : A

The two

views are proven to be equivalent. The Kripke view is more akin to code, but the contextually-typed
view is more well-behaved.
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