
Abstract Interpretation-Based Static Analysis — Caterina Urban

Lecture 1 - July 2, 2025

1 Preliminaries

Abstract Interpretation is the modeling of a program’s behavior. Rice’s theorem showed that
there is no general method to prove non-trivial properties of all programs. As such, Abstract
Interpretation provides sound approximations of program properties. It models programs as discrete
states and specifies which states are allowed or not. Abstract Interpretation is based on order theory.
In this section, we will first introduce partially ordered sets (poset),Galois connections, and Kleene’s
fixpoint theorem.

There are three parts in Abstract Interpretation.

1. Practical tools

2. Abstract semantics, domains and algorithmic approaches to decide program properties

3. Concrete semantics, which are mathematical models of program behavior

1.1 Order Theory(Points, Chains, Lattices)

A partially ordered set (poset) is a pair (X,≤) where:

• X is a set,

• ≤ is a binary relation on X that is

– reflexive: ∀x ∈ X,x ≤ x,

– antisymmetric: if x ≤ y and y ≤ x, then x = y,

– transitive: if x ≤ y and y ≤ z, then x ≤ z.

A totally ordered set has all the above properties, and the additional property that the binary
relation is:

1

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

• total: ∀x, y, z ∈ X, (x ≤ y) ∨ (y ≤ z)

For a function f : X 7→ X,

• x is a fixpoint of f if x = f(x)

• x is a pre-fixpoint of f if x ≥ f(x)

• x is a post-fixpoint of f if x ≤ f(x)

A chain of a poset (X,≤) is a a subset of S ⊆ X that is totally ordered.

• S is a chain of (X,≤) if ∀u, v ∈ S, (u ≤ v) ∨ (v ≤ u)

A poset is completely ordered if every chain in the poset has a supremum.

• Formal representation TBD

A complete poset (X,≤,∧,∨,⊤,⊥) would always be uniquely bounded with a supremum ⊤ and
an infimum ⊥.

• ∨ is the join of elements

• ∧ is the meet of elements

• ∀x ∈ X,⊥ ≤ x

• ∀x ∈ X,x ≤ ⊤

1.2 Galois Connection

A Galois Connection is an isomorphism between two posets.

• Connect two posets (C,≤C) and (A,≤A) via:

– Abstraction function α : C → A.

– Concretization function γ : A→ C.

• Satisfying:
∀c ∈ C, a ∈ A : α(c) ≤A a ⇐⇒ c ≤C γ(a).

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Aslan Zhang
2 [b]

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

1.3 Kleene’s Fixpoint Theorem

Kleene’s theorem states that, in a complete partial order (CPO), for a Scott-continuous and mono-
tonic function f , the ascending chain starting from an initial element c—given by the sequence
f0(c), f1(c), . . .—converges to the least fixpoint of f :

lfp≤c f =
⊔
i≥0

f i(c),

This result forms the theoretical foundation of defining program semantics as fixpoints in abstract
interpretation.

• Prefix Trace Semantics:
Defines the set of all finite prefix traces starting from an initial set of states I ∈ P(Σ):

Tp(I) = {s0, . . . , sn | n ≥ 0, s0 ∈ I, ∀i : ⟨si, si+1⟩ ∈ τ}.

This can be expressed as the least fixpoint:

Tp(I) = lfp⊆∅Fp, Fp(T) = I ∪ (T ; τ),

where T ; τ denotes the set of traces extended with transitions according to τ .

• Prefix State Abstraction:
Maps prefix traces to their ending states, defined by the Galois connection (αp, γp):

αp(T) = {s ∈ Σ | ∃ trace ending in s},

γp(S) = {all traces ending in some s ∈ S}.

By Kleene’s fixpoint transfer theorem, we have

αp(Tp(I)) = R(I),

where R(I) denotes the forward reachability semantics.

• Forward Reachability Semantics:
Defines the set of program states reachable from an initial set I:

R(I) = {s | ∃n ≥ 0, s0 ∈ I, s = sn, ∀i : ⟨si, si+1⟩ ∈ τ},

which can be written in least fixpoint form:

R(I) = lfp⊆∅Fr, Fr(S) = I ∪ post(S),

where
post(S) = {s′ ∈ Σ | ∃s ∈ S, ⟨s, s′⟩ ∈ τ}.

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Aslan Zhang
3 [b]

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

2 A numerical execution model

We introduce a language saturating the art of losing precision, capable of assigning ranges of
values to a variable.

2.1 Syntax

• Numeric Expression: e := c | [c, c] | x | −e | e ⋄ e

• Program Syntax: s := x← e | s; s | if e then s else s | while e do s done

2.2 Expression Semantics

• ρ : X→ Z

• E : (X→ Z)→ P(Z)

2.3 Transition Semantics

• Programs modeled as transition systems:

– Executions modeled as transitions between states.

– States are environments/memory at specific program points.

– Transitions represent relations, not necessarily functions.

• For assignments:

– Transitions map an environment before assignment to one after.

• For control structures:

– If-statements: evaluate condition, transition to body if true, otherwise skip.

– While-loops: repeated transitions until condition is false.

2.4 Labeling

Statements syntax:

stmt ::= \ell X \leftarrow expr \ell (assignment, \ell \in \mathcal{L})

| if \ell expr \bowtie 0 then stmt end \ell (conditional, \bowtie \in \{=, \leq, \dots\})

| while \ell expr \bowtie 0 do stmt done \ell (loop)

| stmt; stmt (sequence)

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Aslan Zhang
4 [b]

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

Transition semantics definitions using labels:

Σ
def
= L × (X→ Z),

τ ⊆ Σ× Σ,

τ [[ℓ1X ← eℓ2]]
def
= {((ℓ1, ρ), (ℓ2, ρ[X 7→ v])) | ρ ∈ E , v ∈ E[[e]]ρ},

τ [if ℓ1e ▷◁ 0 then ℓ2sℓ3 end ℓ4]
def
= (see slides for complete expression),

τ [while ℓ1e ▷◁ 0 do ℓ2sℓ3 done ℓ4]
def
= (see slides for complete expression).

3 Concrete Semantics

Concrete semantics:

• State properties: sets of reachable states with desired properties.

• Trace properties: e.g., termination, liveness.

While state semantics capture individual states, trace semantics capture sequences of states as the
program executes. State semantics are therefore abstractions of trace semantics, in that you can get
from trace semantics to state semantics by removing parts of the sequence in a state. For example,
if you remove all but the last state of a trace semantics, you get the forward state semantics, which
are the final reachable states of a program.

• Σ — the set of program states. Each state typically combines a control location and a
store:

Σ = L × (X→ Z)

• τ ⊆ Σ×Σ — the transition relation between program states. A pair (s, s′) ∈ τ means the
program can move from state s to state s′ in one step.

• Σ∗ — the set of all finite sequences of states, also known as finite traces. Formally:

Σ∗ =

∞⋃
n=0

Σn

• Σω — the set of all infinite sequences of states. These represent non-terminating or
infinite executions.

• Σ∞ = Σ∗ ∪ Σω — the set of all traces, both finite and infinite.

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Aslan Zhang
5 [b]

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

3.1 Maximal Trace Semantics

The lowest and least abstracted level of trace semantics are maximal trace semantics. Maximal
trace semantics capture all possible traces of a program, finite and infinite. More formally we define
maximal trace semantics as:

Definition: The set of all finite and infinite traces a program may produce.

Let Σ be the set of program states, τ ⊆ Σ × Σ be the transition relation, and B be the set of
blocking (final) states:

M ≜ {s0 . . . sn ∈ Σ∗ | sn ∈ B ∧ ∀i < n : (si, si+1) ∈ τ} ∪ {s0s1 . . . ∈ Σω | ∀i : (si, si+1) ∈ τ}

Fixpoint Formulation:

M = lfpΣ
ω

⊆ F (T) where F (T) = B ∪ (τ ;T)

3.2 Partial Finite Trace Semantics

Partial finite trace semantics are the direct abstraction of maximal trace semantics. Partial finite
trace semantics is made of all non-terminating traces of maximal traces. But it does not directly
remove all non-terminating traces, it keeps the finite prefixes of infinite traces. Formally, we define:

Definition: The set of all finite valid execution prefixes (not necessarily terminating).

T ≜ {s0 . . . sn ∈ Σ∗ | ∀i < n : (si, si+1) ∈ τ}

Fixpoint Formulation:

T = lfp∅⊆ F ∗
p where F ∗

p (T) = Σ ∪ (T ; τ)

3.3 Partial Finite Trace Abstraction

Maximal trace semantics are abstracted to partial finite trace semantics by the partial finite trace
abstraction. It is made by combining a finite prefix abstraction (which simply returns all finite
traces in T) and a suffix abstraction, which returns the prefix of infinite traces. A trace σ is in the
prefix abstraction of T if and only if it can be extended by some suffix σ′ such that the full trace
σ · σ′ is in T .

• Finite prefix abstraction: α∗(T) = T ∩ Σ∗

• Suffix abstraction: α⪯(T) = {σ ∈ Σ∞ | ∃σ′ : σ · σ′ ∈ T}

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Aslan Zhang
6 [b]

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

3.4 Prefix Trace Semantics

Definition: The set of all finite traces starting from initial states I ⊆ Σ.

Tp(I) = {s0 . . . sn ∈ Σ∗ | s0 ∈ I ∧ ∀i < n : (si, si+1) ∈ τ}

Fixpoint Formulation:

Tp(I) = lfp∅⊆Fp where Fp(T) = I ∪ (T ; τ)

3.5 Suffix Trace Semantics

Definition: The set of all finite traces ending in final states F ⊆ Σ.

Ts(F) = {s0 . . . sn ∈ Σ∗ | sn ∈ F ∧ ∀i < n : (si, si+1) ∈ τ}

Fixpoint Formulation:

Ts(F) = lfp∅⊆Fs where Fs(T) = F ∪ (τ ;T)

3.6 Prefix / Suffix and Partial Trace Abstractions

Prefix and suffix trace semantics can be obtained from finite partial trace semantics by applying
their relevant abstractions.

• Prefix Abstraction αI :
αI(T) = T ∩ (I · Σ∗)

• Suffix Abstraction αF :
αF (T) = T ∩ (Σ∗ · F)

• Finite Prefix Abstraction α∗:
α∗(T) = T ∩ Σ∗

Forward Reachability Semantics

Definition: The set of states reachable from initial states I ⊆ Σ.

R(I) = {s ∈ Σ | ∃s0, . . . , sn : s0 ∈ I, sn = s, ∀i < n : (si, si+1) ∈ τ}

Fixpoint Formulation:

R(I) = lfp∅⊆Fr where Fr(S) = I ∪ post(S)

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Aslan Zhang
7 [b]

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

3.7 Backward Reachability Semantics

Definition: The set of states that can reach final states F ⊆ Σ.

C(F) = {s ∈ Σ | ∃s0, . . . , sn : s0 = s, sn ∈ F,∀i < n : (si, si+1) ∈ τ}

Fixpoint Formulation:

C(F) = lfp∅⊆Fc where Fc(S) = F ∪ pre(S)

3.8 Reachable State Abstractions

Likewise, forward reachable and backward reachable semantics can be obtained by applying the
reachable state abstractions.

• Forward: αp(T) = {s ∈ Σ | ∃s0, . . . , s ∈ T}

• Backward: αs(T) = {s ∈ Σ | ∃s, . . . , sn ∈ T}

4 Abstract Semantics

Abstract Semantics: A sound approximation of the concrete semantics computed within an
abstract domain.

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Aslan Zhang
8 [b]

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

Abstract Domain: A lattice or complete partial order ⟨A,⊑⟩ used to represent and reason about
program properties.

• Abstraction function α : C → A

• Concretization function γ : A→ C

• Galois connection condition:

∀c ∈ C, a ∈ A : α(c) ⊑ a ⇐⇒ c ∈ γ(a)

• Abstract semantics: defined by abstract transformers f ♯ : A→ A

• Correctness: α(f(c)) ⊑ f ♯(α(c))

• Overapproximate reachable states.

Abstract domains define a way to specify properties of the program. These are examples of abstract
domains:

• Sign Domain

– Abstracts integers into signs: {< 0,= 0, > 0,≤ 0,≥ 0, ̸= 0,⊤,⊥}.
– Non-relational: tracks each variable individually.

– Operations like +,−,× are interpreted over signs using lookup tables.

• Interval Domain

– Represents values as intervals: [a, b] where a, b ∈ Z ∪ {±∞}.
– Non-relational but more precise than sign domain.

– Arithmetic operations performed via interval arithmetic.

– Supports widening to ensure convergence of fixpoint computations.

• Polyhedra Domain

– Tracks linear inequalities over variables (e.g., x+ y ≤ 5).

– Relational domain: captures relationships between variables.

– Most precise but computationally expensive.

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Aslan Zhang
9 [b]

