Abstract Interpretation-Based Static Analysis Caterina Urban

OREGON
PROGRAMMING
LANGUAGES

Abstract Interpretation and Applications in Security and ML —
Caterina Urban

Lecture 2 - July 3, 2025

1. Motivation: Why Prove Termination?

Termination is a liveness property: it ensures a program eventually completes its execution. It
cannot be verified by finite testing—non-termination requires exploring infinite behavior.
Real-world examples of failure due to non-termination:

e Zune Bug (2008): A leap-year date parsing bug caused infinite loops in every Zune device
on December 31, 2008.

e Apache HTTP Server (pre-2.3.3): Vulnerable to denial-of-service via infinite loop be-
havior.

e Azure Storage Outage (2014): Transient errors triggered retry loops that never exited.

These examples motivate static analysis of termination — i.e., verifying at compile-time that pro-
grams always terminate under all conditions.

2. Liveness Properties: Trace-Based Semantics

Liveness properties can be formalized using trace semantics. A trace t € ¥°° is a (possibly infinite)
sequence of program states.

Types of liveness properties:

e Guarantee: “Something good eventually happens.” (e.g., termination)

T OREGON
V PROGRAMMING
LANGUAGES
Compiled By: 1
Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang



Abstract Interpretation-Based Static Analysis Caterina Urban

e Recurrence: “Something good happens infinitely often.” (e.g., starvation freedom)

Key Concept: Liveness cannot be falsified with finite traces — counterexamples must be infinite.

3. Termination Semantics: Potential vs Definite
We distinguish:
e Potential termination: At least one execution path terminates.

MNT* £

e Definite termination: All execution paths terminate.

MCE”

In non-deterministic programs, these differ. In deterministic settings, they coincide.
Example:
while () {

if (random() % 2 == 0) break;
}

This loop may terminate (potential), but not always (not definite).

4. Ranking Functions: Core Termination Proof Technique

To prove termination, we use a ranking function f : 3 — W where (W, <) is a well-founded set
(no infinite descending chains).

Definition: For a transition system (X%, 7):

(0,0") eT= f(d') < f(0)
Common well-founded sets:

e Natural numbers N

o Ordinals (e.g., w)

T OREGON
Y PROGRAMMING
LANGUAGES
Compiled By: 2
Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang



Abstract Interpretation-Based Static Analysis

Caterina Urban

Concrete Example:

while (x > 0) { x=x - 1; }

Here, f(z) = x. Each iteration decreases x, proving termination.
Formalization in Control Points:

f:X =N can be viewed as f : L — (£ = N)

where £ is the control point (line) and £ is the environment (state variables).

5. The 3-Step Termination Analysis Recipe

1. Concrete Semantics: Capture all actual program behaviors.
2. Abstract Semantics: Use finite representations (abstract domains).

3. Practical Tools: Build analyzers to check termination properties.

Each step approximates or encodes the previous to ensure tractability.

6. Hierarchy of Termination Semantics

We define several layers of semantics:

e M: Maximal trace semantics (all executions)
e Ty Terminating traces only

e Ry Termination via ranking abstraction

These are linked by abstraction:
M a—> Ta % R

Compiled By: 3
Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang

o

OREGON
PROGRAMMING
LANGUAGES



Abstract Interpretation-Based Static Analysis Caterina Urban

7. Definite Termination Trace Semantics

To eliminate ambiguity due to prefix overlap between finite and infinite traces, we define:
o (T) ={t € TNY* | nhdb(¢t, T NX¥) = 0}
where nhdb = “non-harmless debug prefixes.”

Goal: Exclude finite traces with infinite extensions.

8. Fixpoint Transfer: From Concrete to Abstract

Using Tarski’s fixpoint theorem, we transfer least fixpoints to abstract domains:
a(lfp f) =1fp f# if « is a complete morphism

Used to derive:
Tar = Upc F* where F™ is the abstract transformer

9. Ranking Function Abstraction

We approximate the set of state transitions with a relation » C ¥ x X, and define:

0 if no successor

ay(r)(o) = {

sup{ay(r)(c’) + 1} otherwise

Then:
am(T) = ay(— (7))

10. Termination Semantics as Fixpoint

We define:

0 oceB
sup{f(c’)+ 1] (0,0") € T} otherwise

Fu(f)(o) = {

If I C dom(Ryy), the program terminates from initial states T

T OREGON
Y PROGRAMMING
LANGUAGES
Compiled By: 4
Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang



Abstract Interpretation-Based Static Analysis

Caterina Urban

11. Denotational Semantics of Termination

Statements have corresponding transformers:

Rl = e]](f)(p) = sup{f(plx — v]) + 1}
Rar[fif e then s]|(f) = case-based
Ras[[while e do s]](f) = lfp of nested transformer

This supports a compositional analysis.

12. Piecewise-Defined Ranking Abstractions

Ranking functions can be defined piecewise across different constraints:

R?{Z L —> A with A = piecewise function domain

Auxiliary Abstract Domains:

e Linear Constraints: Intervals, polyhedra over variables.

e Affine Functions: f(z) =mjz; + -+ mgxg + ¢

Example:

while (x >= 0) {
X =x -2 % x + 10;

¥

Different ranking functions apply depending on the value of x.

13. Summary

Termination analysis using abstract interpretation relies on:

e Rich semantics for execution traces

e Sound abstraction of behavior

Compiled By: 5
Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang

o

OREGON
PROGRAMMING
LANGUAGES



Abstract Interpretation-Based Static Analysis Caterina Urban

e Ranking functions over well-founded domains

e Piecewise abstraction and numeric reasoning

Such analyses are powerful tools to ensure program reliability and safety.

T OREGON
V PROGRAMMING
LANGUAGES
Compiled By: 6
Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang



