
Abstract Interpretation-Based Static Analysis Caterina Urban

Abstract Interpretation and Applications in Security and ML —

Caterina Urban

Lecture 2 - July 3, 2025

1. Motivation: Why Prove Termination?

Termination is a liveness property: it ensures a program eventually completes its execution. It
cannot be verified by finite testing—non-termination requires exploring infinite behavior.

Real-world examples of failure due to non-termination:

• Zune Bug (2008): A leap-year date parsing bug caused infinite loops in every Zune device
on December 31, 2008.

• Apache HTTP Server (pre-2.3.3): Vulnerable to denial-of-service via infinite loop be-
havior.

• Azure Storage Outage (2014): Transient errors triggered retry loops that never exited.

These examples motivate static analysis of termination — i.e., verifying at compile-time that pro-
grams always terminate under all conditions.

2. Liveness Properties: Trace-Based Semantics

Liveness properties can be formalized using trace semantics. A trace t ∈ Σ∞ is a (possibly infinite)
sequence of program states.

Types of liveness properties:

• Guarantee: “Something good eventually happens.” (e.g., termination)

Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang
1



Abstract Interpretation-Based Static Analysis Caterina Urban

• Recurrence: “Something good happens infinitely often.” (e.g., starvation freedom)

Key Concept: Liveness cannot be falsified with finite traces — counterexamples must be infinite.

3. Termination Semantics: Potential vs Definite

We distinguish:

• Potential termination: At least one execution path terminates.

M∩ Σ∗ ̸= ∅

• Definite termination: All execution paths terminate.

M ⊆ Σ∗

In non-deterministic programs, these differ. In deterministic settings, they coincide.

Example:

while (*) {

if (random() % 2 == 0) break;

}

This loop may terminate (potential), but not always (not definite).

4. Ranking Functions: Core Termination Proof Technique

To prove termination, we use a ranking function f : Σ → W where (W,≤) is a well-founded set
(no infinite descending chains).

Definition: For a transition system (Σ, τ):

(σ, σ′) ∈ τ ⇒ f(σ′) < f(σ)

Common well-founded sets:

• Natural numbers N

• Ordinals (e.g., ω)

Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang
2



Abstract Interpretation-Based Static Analysis Caterina Urban

Concrete Example:

while (x > 0) { x = x - 1; }

Here, f(x) = x. Each iteration decreases x, proving termination.

Formalization in Control Points:

f : Σ → N can be viewed as f : L → (E → N)

where L is the control point (line) and E is the environment (state variables).

5. The 3-Step Termination Analysis Recipe

1. Concrete Semantics: Capture all actual program behaviors.

2. Abstract Semantics: Use finite representations (abstract domains).

3. Practical Tools: Build analyzers to check termination properties.

Each step approximates or encodes the previous to ensure tractability.

6. Hierarchy of Termination Semantics

We define several layers of semantics:

• M: Maximal trace semantics (all executions)

• TM : Terminating traces only

• RM : Termination via ranking abstraction

These are linked by abstraction:

M α∗
−→ TM

αM−−→ RM

Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang
3



Abstract Interpretation-Based Static Analysis Caterina Urban

7. Definite Termination Trace Semantics

To eliminate ambiguity due to prefix overlap between finite and infinite traces, we define:

α∗(T ) = {t ∈ T ∩ Σ∗ | nhdb(t, T ∩ Σω) = ∅}

where nhdb = “non-harmless debug prefixes.”

Goal: Exclude finite traces with infinite extensions.

8. Fixpoint Transfer: From Concrete to Abstract

Using Tarski’s fixpoint theorem, we transfer least fixpoints to abstract domains:

α(lfp f) = lfp f# if α is a complete morphism

Used to derive:
TM = lfp⊆F

∗ where F ∗ is the abstract transformer

9. Ranking Function Abstraction

We approximate the set of state transitions with a relation r ⊆ Σ× Σ, and define:

αV (r)(σ) =

{
0 if no successor

sup{αV (r)(σ
′) + 1} otherwise

Then:
αM (T ) = αV (→ α(T ))

10. Termination Semantics as Fixpoint

We define:
RM = lfp⪯FM

FM (f)(σ) =

{
0 σ ∈ B
sup{f(σ′) + 1 | (σ, σ′) ∈ τ} otherwise

If I ⊆ dom(RM ), the program terminates from initial states I.

Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang
4



Abstract Interpretation-Based Static Analysis Caterina Urban

11. Denotational Semantics of Termination

Statements have corresponding transformers:

RM [[x := e]](f)(ρ) = sup{f(ρ[x 7→ v]) + 1}
RM [[if e then s]](f) = case-based

RM [[while e do s]](f) = lfp of nested transformer

This supports a compositional analysis.

12. Piecewise-Defined Ranking Abstractions

Ranking functions can be defined piecewise across different constraints:

R#
M : L → A with A = piecewise function domain

Auxiliary Abstract Domains:

• Linear Constraints: Intervals, polyhedra over variables.

• Affine Functions: f(x) = m1x1 + · · ·+mkxk + q

Example:

while (x >= 0) {

x = x - 2 * x + 10;

}

Different ranking functions apply depending on the value of x.

13. Summary

Termination analysis using abstract interpretation relies on:

• Rich semantics for execution traces

• Sound abstraction of behavior

Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang
5



Abstract Interpretation-Based Static Analysis Caterina Urban

• Ranking functions over well-founded domains

• Piecewise abstraction and numeric reasoning

Such analyses are powerful tools to ensure program reliability and safety.

Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang
6


