Abstract Interpretation-Based Static Analysis Caterina Urban

OREGON
PROGRAMMING
LANGUAGES

Static Analysis of Liveness Properties — Caterina Urban

Lecture 3 - July 4, 2025

1. Motivation: Static Termination Failures

Static analysis is critical to verify termination, a fundamental liveness property.

Zune Bug (Dec 31, 2008): A leap year bug caused all devices to freeze in an infinite loop.

Other real-world failures:

e Apache HTTP Server (pre-2.3.3): DoS via unhandled loop.

o Azure Storage (2014): Infinite retries led to downtime.

2. Liveness Properties and Termination

Liveness properties assert that “something good eventually happens”.

e Guarantee properties: Something happens at least once.

e Recurrence properties: Something happens infinitely often.

Termination is a guarantee property. Defined over trace sets:

Termination: T = X%, T C X%

3. Potential vs. Definite Termination

For a program M and the set of all finite (terminating) traces >*

T OREGON
V PROGRAMMING
LANGUAGES
Compiled By: 1
Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang



Abstract Interpretation-Based Static Analysis Caterina Urban

e Potential termination: Some executions terminate if

MNT* £

e Definite termination: All executions terminate if

MCE"

In deterministic programs, the two coincide.

4. Ranking Functions for Proving Termination

To define termination, we need to define the concept of a set of a ranking function such that we
can put program states Y into a well ordered set who’s value strictly decreases through transtitions
between states. A ranking function f : ¥ — WV maps program states to a well-ordered set (W, <),
and satisfies:

(0,0") €T = f(o') < f(o)

Example:

1: x := [-infinity, +infinity]
2: while (1 - x < 0) do

3: x :=x -1

4: done

For this line of code, we can see that it will eventually terminate as x decreases. We can create
a ranking function that maps various points of the program to a value. We define the ranking
function by partitioning it with respect to the program control points:

f: X2 =0 isdefinedas f:L— (£—0)

That is, for each control point ¢ € £, we define a function f(¢) mapping environments p to ordinals.

Ranking function (piecewise):

2 otherwise

Fo) = {Zp(x) —1 ifl—p(z)<0

T OREGON
Y PROGRAMMING
LANGUAGES
Compiled By: 2
Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang



Abstract Interpretation-Based Static Analysis Caterina Urban

f4)=Xp. 0
B 1 if 1 —p(z)£0
1@) =2 {2p(:c)—1 if 1—p(z) <0
B 2 if 2—p(z) £0
13 = 2. {2p(1‘)—2 if 2— p(x) <0

5. 3-Step Static Termination Analysis

1. Concrete semantics: Full trace semantics of execution.
2. Abstract semantics: Approximate behavior with abstract domains.

3. Practical tools: Implement analysis (e.g., AProVE, Termite).

6. Hierarchy of Semantics

M Maximal trace semantics
Ty Termination trace semantics
Ry Termination semantics (ranking abstraction)

Abstractions relate them:

a* a

7. Definite Termination Trace Semantics

Defined using the abstraction o*:

o*(T) = {t € TN'S* | nhdb(t, T N 5¥) = 0}

Where nhdb (non-harmless debug, or prefix-overlapping) traces. This function removes finite traces
that share a prefix with infinite traces.

T OREGON
Y PROGRAMMING
LANGUAGES
Compiled By: 3
Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang



Abstract Interpretation-Based Static Analysis

Caterina Urban

8. Tarskian Fixpoint Transfer

To reason about abstract fixpoints:

a(lfp f) =1fp f# under suitable conditions

Used to connect:
Concrete M =1fp F = Ty = lfp F*

9. Ranking Function Abstraction

Define oy
ay(T) = ay(— o(T))

Backward step counting:

0 if no successors in r
ay(r)(o) = , .
sup{av(r)(c’) + 1} otherwise

10. Least Fixpoint for Termination Semantics

0 ocehB
sup{f(c¢')+ 1] (o,0’) € 7} otherwise

Fu(f)(o) = {

Theorem: I C dom(Rjs) = Program terminates from I.

11. Denotational Semantics

Transformers for statements:
Rul[s1; 82l f = Rul[s1]l(Ral[s2]]f)

Rullz < €]l f(p) = sup{f(p[z — v]) + 1}

Conditionals and loops use case distinctions and fixpoint iteration.

Compiled By: 4
Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang

OREGON
PROGRAMMING
LANGUAGES



Abstract Interpretation-Based Static Analysis

Caterina Urban

12. Piecewise-Defined Ranking Abstractions

Abstract semantics Rf/l:
YR (@) 2 R ()

Use auxiliary domains:

e Linear Constraints Domain: Canonical inequalities

e Natural-Valued Affine Functions: f(z) =myz; + -+ mgxg + ¢

Example: Domain splits by guards like z > 0, z — 3 > 0, etc.

Conclusion

We saw how termination can be analyzed using:

e Concrete and abstract semantics
e Ranking functions and fixpoint abstractions

e Numerical and logical abstractions for precision

Compiled By: 5
Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang

o

OREGON
PROGRAMMING
LANGUAGES



