
Abstract Interpretation-Based Static Analysis — Caterina Urban

Lecture 4 - July 4, 2025

Termination Static Analysis

The goal is to predict a valid ranking function for a given program. A ranking function maps
program states to a well-founded domain (e.g., natural numbers or ordinals) such that its value
strictly decreases with each step of program execution, and is bounded below. If such a function
can be found, the program is guaranteed to terminate.

Piecewise-Defined Ranking Functions

These functions are defined over different regions of the program’s state space, with each region
having its own ranking function. This allows for more precise analysis of programs with complex
control flow.

• Definite Termination Semantics: A concrete ranking function RM maps states to RM (x),
where x is a program state.

• Abstract Definite Termination Semantics: An abstract ranking function γ(Rb
M) ap-

proximates RM . The relationship is defined by:

dom(γ(Rb
M)) ⊆ dom(RM)

∀x ∈ dom(γ(Rb
M)) : RM (x) ≤ γ(Rb

M)(x)

This means the abstract domain covers a subset of the concrete domain, and for any state
in the abstract domain, the concrete value is less than or equal to the abstract value (sound
over-approximation).

• Piecewise-Defined Function Domain: Parameterized by an underlying numerical ab-
stract domain ⟨D,⊑D⟩ (e.g., intervals, polyhedra). The domain F is defined as:

F ∼= def{⊥F } ∪ (Z|M| → N) ∪ {⊤F }

1

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

We consider affine functions of the form f(X1, ..., Xk) =
∑k

i=1mi ·Xi + q.

• Approximation Order ≤F [D]:

– Between defined leaf nodes:

f1 ≤F [D]f2 ≜
def ∀ρ ∈ γD(D) : f1(..., ρ(Xi), ...) ≤ f2(..., ρ(Xi), ...)

– Otherwise (when one or both leaf nodes are undefined): ⊥F≤F f ≤F ⊤F .

• Computational Order EF [D]: Similar to approximation order, but used for computational
purposes within the abstract domain.

• Piecewise-Defined Functions Domain E :

E ≜


⊥F if totally undefined
⊤F if totally defined
{c : t1; t2} if a decision node with condition c and subtrees t1, t2
f if a leaf node with function f

The concretization function γA : E → (⊤LE) is defined recursively.

• Abstract Domain Operators:

– Binary Operators: Rely on a tree unification algorithm to find a common refinement
for decision trees. Examples include approximation order, computational order, join,
meet, and widening.

– Unary Operators: Rely on a tree pruning algorithm. Examples include assignment
and test.

• Widening: A key operator in abstract interpretation to ensure termination of the analysis
for infinite-height lattices. It extrapolates the values of the ranking function. The prediction
can temporarily be wrong, i.e., it can under-approximate the value or over-approximate the
domain.

– Domain Widening: Limits the size of decision trees.

– Value Widening: Widen each (defined) leaf node with respect to adjacent (defined)
leaf nodes using an extrapolation operator.

Ordinal-Valued Ranking Functions

For programs that do not terminate with a finite number of steps but still terminate, natural-valued
ranking functions are insufficient. Ordinals provide a well-founded domain for such cases.

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang
2 [b]

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

Need for Ordinals

Consider a program like ‘while (x ¿ 0) do x := x - 1 done‘. A simple ranking function like x
works. However, for more complex nested loops or programs with non-deterministic choices, the
number of steps to termination might not be bounded by a natural number. Ordinals extend the
natural numbers to include transfinite values like ω, ω+1, ω ·2, ω2, etc., which are useful for proving
termination of programs that exhibit complex termination behavior.

Ordinals

• Finite Ordinals: 0, 1, 2, . . . , n, . . .

• Transfinite Ordinals: ω, ω + 1, . . . , ω · 2, . . . , ω2, . . .

• Successor Ordinals: succ(λ) ≜ λ ∪ {λ}

• Limit Ordinals: Ordinals that are not successor ordinals (e.g., ω).

Ordinal Arithmetic

• Addition:

– λ+ 0 = λ (zero case)

– λ+ succ(β) = succ(λ+ β) (successor case)

– λ+ β =
⋃

γ<β(λ+ γ) (limit case)

Properties: associative, but not commutative (e.g., 1 + ω = ω ̸= ω + 1).

• Multiplication:

– λ · 0 = 0 (zero case)

– λ · succ(β) = (λ · β) + λ (successor case)

– λ · β =
⋃

γ<β(λ · γ) (limit case)

Properties: associative, left distributive, but not commutative (e.g., 2 ·ω = ω ̸= ω · 2), and
not right distributive (e.g., (ω + 1) · ω = ω · ω ̸= ω · ω + ω).

• Cantor Normal Form: Any ordinal α > 0 can be uniquely written as:

α = ωβ1 · n1 + ωβ2 · n2 + · · ·+ ωβk · nk

where β1 > β2 > · · · > βk ≥ 0 are ordinals and n1, . . . , nk are positive integers.

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang
3 [b]

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

• Piecewise-Defined Function Domain for Ordinals: The set of functions P is extended
to include sums of products of ordinals and functions:

P ≜

{∑
i

ωi · fi | fi ∈ Pnatural-valued

}
∪ {CW ,−→W }

where CW and −→W represent the bottom and top elements for ordinal-valued functions.

• Approximation Order ≤F [D] for Ordinals:

– Between defined leaf nodes (ordinal-valued functions):∑
i

ωi·fi1 ≤W [D]
∑
i

ωi·fi2 ≜def ∀α ∈ γD(D) :
∑
i

ωi·fi1(..., α(Xi), ...) ≤
∑
i

ωi·fi2(..., α(Xi), ...)

– Otherwise: ⊥W≤W f ≤W ⊤W .

• Computational Order EF [D] for Ordinals: Similar to approximation order.

• Concretization Function for Ordinals: The concretization function γA for piecewise-
defined ordinal-valued functions is defined similarly, mapping abstract elements to concrete
ordinal-valued functions.

• Abstract Domain Operators for Ordinals: The operators (order, join, meet, widening,
assignment, test) are extended to handle ordinal-valued functions, often by applying the
operations coefficient-wise in the Cantor Normal Form.

– Approximation Join for Ordinals: Performs join in ascending powers of ω.

– Computational Join for Ordinals: Performs join in ascending powers of ω.

– Value Widening for Ordinals: Extrapolates in ascending powers of ω.

– Assignments for Ordinals: Applied on defined leaf nodes in ascending powers of ω.

Liveness Properties and CTL

Liveness Properties

Liveness properties assert that ”something good eventually happens”.

• Guarantee Properties: ”something good eventually happens at least once” (e.g., Program
Termination).

• Recurrence Properties: ”something good eventually happens infinitely often” (e.g., Star-
vation Freedom).

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang
4 [b]

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

Computation Tree Logic (CTL)

CTL is a branching temporal logic used to express properties about computation trees. Formulas
ϕ are built from atomic propositions (a), logical connectives (¬,∧,∨), and temporal operators with
path quantifiers:

• Path Quantifiers:

– A: for all paths
– E: for some path

• Temporal Operators:

– X: next state
– U: until
– F: eventually (future) - Fϕ ≡ trueUϕ
– G: globally (always) - Gϕ ≡ ¬F¬ϕ

Common combinations: AFϕ,EFϕ,AGϕ,EGϕ,AUϕ,EUϕ.

Static Guarantee Analysis

This analysis aims to prove guarantee properties.

• Program Guarantee Semantics: Defines the concrete semantics for guarantee properties.
For a property ϕ, the semantics ⊆G

ϕ is defined as a greatest fixed point (gfp) or least fixed
point (lfp) depending on the property.

• Abstract Program Guarantee Semantics: An abstract interpretation framework using
piecewise-defined ranking functions to approximate the concrete guarantee semantics.

• Soundness: If the abstract analysis proves a property, then the concrete program satisfies
it.

Static Recurrence Analysis

This analysis aims to prove recurrence properties.

• Program Recurrence Semantics: Defines the concrete semantics for recurrence properties,
often building upon guarantee semantics.

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang
5 [b]

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

• Abstract Program Recurrence Semantics: An abstract interpretation framework for
recurrence properties. This often employs a dual widening operator.

• Dual Widening: For a poset ⟨D,⊑⟩, a dual widening ∇ : D ×D → D satisfies:

(i) For all x, y ∈ D, we have x ⊑ x∇y and y ⊑ x∇y.

(ii) For all decreasing chains x0 ⊒ x1 ⊒ · · · ⊒ xn ⊒ . . . , the chain y0 ≜ x0, yn+1 ≜ yn∇xn+1

is ultimately stationary.

Dual widening is used to stabilize decreasing chains in the abstract domain, which is crucial
for analyzing recurrence properties.

Termination Resilience

Termination Resilience addresses the question of whether a program terminates under certain non-
deterministic choices (angelic non-determinism) or diverges under others (demonic non-determinism).

Robust Non-Termination

A program robustly non-terminates if for all inputs, there exists a non-deterministic choice that
leads to divergence. This corresponds to demonic non-determinism.

Termination Resilience

A program exhibits termination resilience if for all inputs, there exists a non-deterministic choice
that leads to termination. This corresponds to angelic non-determinism. The analysis counts
execution steps backwards.

Static Termination Resilience Analysis

This involves a 3-step recipe similar to other static analyses:

1. Concrete Semantics (mathematical models of program behavior).

2. Abstract Semantics, Abstract Domains (algorithmic approaches to decide program proper-
ties).

3. Practical Tools (targeting specific programs).

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang
6 [b]

[c]Abstract Interpretation-Based Static Analysis Caterina Urban

The abstract domain for termination resilience also uses piecewise-defined ranking functions, and
the operators (like join) are adapted for this context, sometimes referred to as ”resilience join”.

Experimental Evaluation

The techniques discussed have been experimentally evaluated on benchmarks like SV-COMP 2024,
Raad et al. @ OOPSLA 2024, and Shi et al. @ FSE 2022.

• Multivariate Constraints: Show good performance for termination and termination re-
silience.

• Univariate Constraints: Can also be effective, and in some cases, univariate constraints
are more precise than multivariate, or vice-versa, depending on the specific property.

[b]Compiled By:

Arjun Vedantham, Huan Zhang, Keith Teo, Yunxiang (Aslan) Zhang
7 [b]

