

Kandinsky - Abstract Interpretation, 1925

Abstract Interpretation and Applications in Security, Data Science, and Machine Learning OPLSS 2025

Caterina Urban Inria & École Normale Supérieure | Université PSL

Who am I?

1987 2006 - 2011 2011 - 2015 2015 2015 - 2019 ETH Zurich Since 2019

Udine, Italie Università degli Studi di Udine École Normale Supérieure NASA & Carnegie Mellon University Inria

BSc, MSc PhD Internship Postdoc

Caterina Urban

The Cost of Software Failure

4 dead, 2 lifelong injuries

Therac-25, 1985-1987

OPLSS 2025

Abstract Interpretation

loss of more than \$370 000 000

Ariane 5, 4 June 1996

Toyota, 2000-2010

Correctness Guarantees A Mathematically Proven Hard Problem

software

Henry Gordon F

requirements

Abstract Interpretation

Formal Methods Deductive Verification

software

requirements

Abstract Interpretation

- •extremely **expressive**
- •relies on the user to guide the proof

Formal Methods Model Checking

model

requirements

Abstract Interpretation

•analysis of a **model** of the software

sound and complete with respect to the model

Caterina Urban

Formal Methods Static Analysis by Abstract Interpretation

software

Abstract Interpretation

- analysis of the source or object code
- fully automatic and sound by construction
- •generally not complete

Static Analysis by Abstract Interpretation

OPLSS 2025

Static Analysis by Abstract Interpretation

SOFTWARE

\$4.85 \$10 ABSTRACTION

\$9.95 **\$10**

OPLSS 2025

Abstract Interpretation

OPLSS 2025

Abstract Interpretation

Abstract Interpretation Today

integral part of the development of safety-critical software

successfully employed by software companies

OPLSS 2025

The Art of Losing Precision

What Could **Possibly Go Right?**

OPLSS 2025

Abstract Interpretation

No Surprises, Please

It's Complicated

Principles of Abstract Interpretation

The Art of Losing Precision

OPLSS 2025

Abstract Interpretation

Caterina Urban

Language Syntax

Numeric Expressions

$$expr := = X$$

C

 $[c_1, c_2]$

-expr

expr \$ expr

Statements

stmt ::= $\ell X \leftarrow expr^{\ell}$

| if $\ell expr \bowtie 0$ then stmt end ℓ

while $^{\ell}expr \bowtie 0$ do stmt done $^{\ell}$

stmt; stmt

OPLSS 2025

$\begin{array}{l} \text{(variable, } X \in \mathbb{X}\text{)}\\ \text{(constant, } c \in \mathbb{Z}\text{)}\\ \text{(non-deterministic input, } c_1, c_2 \in \mathbb{Z} \cup \{-\infty, +\infty\}\text{)}\\ \text{(negation)}\\ \text{(binary operation, } \diamond \in \{+, -, \ldots\}\text{)}\end{array}$

- (assignment, $\ell \in \mathscr{L}$) (conditional, $\bowtie \in \{ = , \leq , ... \}$)
 - (loop)
 - (sequence)

Example

```
1
a ← [0, +∞]
2
b \leftarrow [0, +\infty]
3
q ← 0
₄
 r ← a
 5
 while 6(r \ge b) do
    7
   r \leftarrow r - b
    8
   q \leftarrow q + 1
9
 done
 10
```

Caterina Urban

Static Analysis by Abstract Interpretation 3-Step Recipe

practical tools targeting specific programs

abstract semantics, abstract domains algorithmic approaches to decide program properties

concrete semantics mathematical models of the program behavior

Abstract Interpretation

Caterina Urban

Static Analysis by Abstract Interpretation Program Semantics

practical tools targeting specific programs

abstract semantics, abstract domains algorithmic approaches to decide program properties

concrete semantics mathematical models of the program behavior

OPLSS 2025

Abstract Interpretation

Caterina Urban

Static Analysis by Abstract Interpretation

Expression Semantics

• $E[[expr]]: (X \to Z) \to \mathscr{P}(Z)$ $\rho \in \mathscr{E}$ memory state

 $E[X]\rho \stackrel{\text{def}}{=} \{\rho(X)\}$ $E[[c]]\rho \stackrel{\text{def}}{=} \{c\}$ $E[[[c_1, c_2]]]\rho \stackrel{\text{def}}{=} \{x \in \mathbb{Z} \mid c_1 \le x \le c_2\}$ $E[-e]\rho \stackrel{\text{def}}{=} \{-x \mid x \in E[[e]]\rho\}$ $E[[e_1 + e_2]]\rho \stackrel{\text{def}}{=} \{x_1 + x_2 \mid x_1 \in E[[e]]\rho, x_2 \in E[[e]]\rho\}$ $E[[e_1 - e_2]]\rho \stackrel{\text{def}}{=} \{x_1 - x_2 \mid x_1 \in E[[e]]\rho, x_2 \in E[[e]]\rho\}$

expr := XС $[c_1, c_2]$ -exprexpr 🗢 expr

Caterina Urban

Transition Semantics Program Executions as Discrete Transitions between States

- states: $\Sigma \stackrel{\text{def}}{=} \mathscr{L} \times (\mathbb{X} \to \mathbb{Z})$
- transition relation: $\tau \subseteq \Sigma \times \Sigma$

Transition Semantics

• transition relation: $\tau \subseteq \Sigma \times \Sigma$

 $\tau[\![\ell_1 X \leftarrow e^{\ell_2}]\!] \stackrel{\text{def}}{=} \{(\ell_1, \rho), (\ell_2, \rho[X \mapsto v])) \mid \rho \in \mathscr{C}, v \in E[\![e]\!]\rho\}$ $\tau \| \text{if } \ell_1 e \bowtie 0 \text{ then } \ell_2 s \ell_3 \text{ end } \ell_4 \| \stackrel{\text{def}}{=}$ $\{((\ell_1,\rho),(\ell_2,\rho)) \mid \rho \in \mathscr{C}, \exists v \in E[[e]]\rho : v \bowtie 0\} \cup \tau[[\ell_2 s^{\ell_3}]]\rho \cup \{((\ell_3,\rho),(\ell_4,\rho)) \mid \rho \in \mathscr{C}\} \cup \{(\ell_3,\rho),(\ell_4,\rho)\} \mid \rho \in \mathscr{C}\} \cup \{(\ell_3,\rho),(\ell_4,\rho),(\ell_4,\rho)\} \mid \rho \in \mathscr{C}\}$ $\{((\ell_1,\rho),(\ell_4,\rho)) \mid \rho \in \mathscr{C}, \exists v \in E[[e]]\rho \colon v \bowtie 0\}$ τ [while $\ell_1 e \bowtie 0$ then $\ell_2 s \ell_3$ done ℓ_4] def $\{((\ell_1,\rho),(\ell_2,\rho)) \mid \rho \in \mathscr{E}, \exists v \in E[[e]]\rho : v \bowtie 0\} \cup \tau[[\ell_2 s^{\ell_3}]]\rho \cup \{((\ell_3,\rho),(\ell_1,\rho)) \mid \rho \in \mathscr{E}\} \cup \{(\ell_1,\rho),(\ell_2,\rho),(\ell_1,\rho)\} \mid \rho \in \mathscr{E}\} \cup \{(\ell_1,\rho),(\ell_2,\rho),(\ell_2,\rho),(\ell_3,\rho$ $\{((\ell_1,\rho),(\ell_4,\rho)) \mid \rho \in \mathscr{C}, \exists v \in E[\![e]\!]\rho \colon v \bowtie 0\}$ $\tau[\![s_1;s_2]\!] \stackrel{\text{def}}{=} \tau[\![s_1]\!] \cup \tau[\![s_2]\!]$

stmt ::= ${}^{\ell}X \leftarrow expr^{\ell}$ | if ${}^{\ell}expr \bowtie 0$ then stmt end ${}^{\ell}$ while ${}^{\ell}expr \bowtie 0$ do stmt done ${}^{\ell}$ stmt; stmt

Hierarchy of Semantics

OPLSS 2025

Abstract Interpretation

State Semantics

Trace Semantics

Forward Reachability Semantics

Abstract Interpretation

State Semantics

Order Theory Partial Orders and Partially Ordered Sets

A binary relation $\sqsubseteq \in X \times X$ over a set X is called a partial order when it is:

- reflexive $\forall x \in X \colon x \sqsubseteq x$
- antisymmetric $\forall x, y \in X: (x \sqsubseteq y) \land (y \sqsubseteq x) \Rightarrow x = y$
- transitive $\forall x, y, z \in X$: $(x \sqsubseteq y) \land (y \sqsubseteq z) \Rightarrow x \sqsubseteq z$

 $\langle X, \sqsubseteq \rangle$ is a partially ordered set or poset

Example

powerset of the set of program states ordered by set inclusion

OPLSS 2025

Abstract Interpretation

Order Theory Hasse Diagram

 $\langle \mathscr{P}(\{a,b,c\}), \subseteq \rangle$

OPLSS 2025

Abstract Interpretation

Order Theory (Least) Upper Bounds

 $\langle \mathscr{P}(\{a, b, c\}), \subseteq \rangle$

OPLSS 2025

Abstract Interpretation

Forward Reachability Semantics Program States Reachable From $I \in \mathscr{P}(\Sigma)$

 $\mathscr{R}(I) \stackrel{\text{def}}{=} \{ s \mid \exists n \ge 0, s_0, \dots, s_n \colon s_0 \in I \land s = s_n \land \forall i \colon \langle s_i, s_{i+1} \rangle \in \tau \}$

Caterina Urban

Order Theory Fixpoints

Given a partially ordered set $\langle X, \sqsubseteq \rangle$ and a function $f: X \to X$

- a fixpoint of f is an element $x \in X$ such that x = f(x)
- a pre-fixpoint of f is an element $x \in X$ such that $x \sqsubseteq f(x)$
- a post-fixpoint of f is an element $x \in X$ such that $f(x) \sqsubseteq x$

$$fp(f) \stackrel{\text{def}}{=} \{x \in X \mid x = f(x)\}$$

$$Ifp_x^{\sqsubseteq} f \stackrel{\text{def}}{=} \min_{\sqsubseteq} \{y \in fp(f) \mid x \sqsubseteq y\}$$

$$gfp_x^{\sqsubseteq} f \stackrel{\text{def}}{=} \max_{\sqsubseteq} \{y \in fp(f) \mid y \sqsubseteq x\}$$

OPLSS 2025

Forward Reachability Semantics Least Fixpoint Formulation

Definition

Given a transition system $\langle \Sigma, \tau \rangle$, the image function post: $\mathscr{P}(\Sigma) \to \mathscr{P}(\Sigma)$ maps a set of program states $X \in \mathscr{P}(\Sigma)$ to the set of their successors with respect to the transition relation τ : $\mathsf{post}(X) \stackrel{\mathsf{def}}{=} \{ s' \in \Sigma \mid \exists s \in X \colon \langle s, s' \rangle \in \tau \}$

od 10

3

5

Forward Reachability Denotational Formulation

 $\mathscr{R}[[\ell_1 X \leftarrow e^{\ell_2}]]S \stackrel{\text{def}}{=} \{(\ell_2, \rho[X \mapsto v]) \mid (\ell_1, \rho) \in S, v \in E[[e]]\rho\}$ \mathscr{R} [[if $\ell_1 e \bowtie 0$ then $\ell_2 s \ell_3$ end ℓ_4]] $S \stackrel{\text{def}}{=}$ $\{(\ell_{4},\rho) \mid (\ell_{3},\rho) \in \mathscr{R}[[\ell_{2}s\ell_{3}]]\{(\ell_{2},\rho) \mid (\ell_{1},\rho) \in S, \exists v \in E[[e]]\rho : v \bowtie 0\}\} \cup$ $\{(\ell_{A},\rho) \mid (\ell_{1},\rho) \in S, \exists v \in E[[e]]\rho \colon v \bowtie 0\}$ \mathscr{R} while $\ell_1 e \bowtie 0$ then $\ell_2 s \ell_3$ done $\ell_4 \rrbracket S \stackrel{\text{def}}{=}$ $\{(\ell_4,\rho) \mid (\ell_1,\rho) \in \mathsf{lfp}_{\varnothing}^{\subseteq} F_r, \exists v \in E[\![e]\!]\rho \colon v \Join 0\}$ where $F_{v}(Y) \stackrel{\text{def}}{=} S \cup \{(\ell_{1}, \rho) \mid (\ell_{3}, \rho) \in \mathscr{R}[[\ell_{2}s\ell_{3}]] \{(\ell_{2}, \rho) \mid (\ell_{1}, \rho) \in Y, \exists v \in E[[e]]\rho : v \bowtie 0\}\}$ $\mathscr{R}[[s_1;s_2]]S \stackrel{\mathsf{def}}{=} \mathscr{R}[[s_2]](\mathscr{R}[[s_1]]S)$

stmt ::= ${}^{\ell}X \leftarrow expr^{\ell}$ | if $\ell expr \bowtie 0$ then stmt end ℓ while $\ell expr \bowtie 0$ do stmt done ℓ stmt; stmt

Backward Reachability Semantics

State Semantics

Backward Reachability Semantics Program States Reaching $F \in \mathscr{P}(\Sigma)$

• $\mathscr{C}(F) \in \mathscr{P}(\Sigma)$

 $\mathscr{C}(F) \stackrel{\text{def}}{=} \{ s \mid \exists n \ge 0, s_0, \dots, s_n \colon s = s_0 \land s_n \in F \land \forall i \colon \langle s_i, s_{i+1} \rangle \in \tau \}$

Backward Reachability Semantics Least Fixpoint Formulation

$$\mathscr{C}(F) = \operatorname{lfp}_{\varnothing}^{\subseteq} F_{c}$$
$$F_{c}(S) \stackrel{\text{def}}{=} F \cup \operatorname{pre}(S)$$

Definition

Given a transition system $\langle \Sigma, \tau \rangle$, the preimage function pre: $\mathscr{P}(\Sigma) \to \mathscr{P}(\Sigma)$ maps a set of program states $X \in \mathscr{P}(\Sigma)$ to the set of their predecessors with respect to the transition relation τ : $pre(X) \stackrel{\text{def}}{=} \{ s \in \Sigma \mid \exists s' \in X \colon \langle s, s' \rangle \in \tau \}$

od 10

3

5

Backward Reachability Denotational Formulation

 $\mathscr{C}[[\ell_1 X \leftarrow e^{\ell_2}]]S \stackrel{\text{def}}{=} \{(\ell_1, \rho) \mid (\ell_2, \rho[X \mapsto v]) \in S, v \in E[[e]]\rho\}$ \mathscr{C} if $\ell_1 e \bowtie 0$ then $\ell_2 s \ell_3$ end $\ell_4 \upharpoonright S \stackrel{\text{def}}{=}$ $\{(\ell_1, \rho) \mid (\ell_2, \rho) \in \mathscr{C}[[\ell_2 S^{\ell_3}]] \{(\ell_3, \rho) \mid (\ell_4, \rho) \in S\}, \exists v \in E[[e]]\rho : v \bowtie 0\} \cup$ $\{(\ell_1, \rho) \mid (\ell_4, \rho) \in S, \exists v \in E[[e]] \rho \colon v \bowtie 0\}$ \mathscr{C} [while $\ell_1 e \bowtie 0$ then $\ell_2 s \ell_3$ done ℓ_4] $S \stackrel{\text{def}}{=} \text{Ifp}_{\varnothing} F_c$ where $F_c(Y) \stackrel{\text{def}}{=} \{ (\ell_1, \rho) \mid (\ell_4, \rho) \in S, \exists v \in E[[e]] \rho \colon v \bowtie 0 \} \cup \{\ell_4, \rho\} \in S \}$

 $\mathscr{C}[[s_1; s_2]]S \stackrel{\text{def}}{=} \mathscr{C}[[s_1]](\mathscr{C}[[s_2]]S)$

stmt ::= ${}^{\ell}X \leftarrow expr^{\ell}$ | if $\ell expr \bowtie 0$ then stmt end ℓ while $\ell expr \bowtie 0$ do stmt done ℓ stmt; stmt

 $\{(\ell_1, \rho) \mid (\ell_2, \rho) \in \mathscr{C}[[\ell_2 s^{\ell_3}]] \{(\ell_3, \rho) \mid (\ell_1, \rho) \in Y\}, \exists v \in E[[e]]\rho : v \bowtie 0\}$

Prefix Trace Semantics

OPLSS 2025

Abstract Interpretation

State Semantics

Trace Semantics

Program State Sequences

- *c* **empty** sequence
- s_0, \ldots, s_{n-1} sequence of length n
- Σ^n set of sequences of length n $\Sigma^* \stackrel{\text{def}}{=} \bigcup \Sigma^i$ set of **all finite sequences** i∈ℕ
- Σ^{ω} set of all infinite sequences
- $\Sigma^{\infty} \stackrel{\text{def}}{=} \Sigma^* \cup \Sigma^{\omega}$ set of all sequences

Operations on Sequences

- concatenation: $(s_0, ..., s_n) \cdot (s'_0, ..., s'_n) \stackrel{\text{def}}{=} s_0, ..., s_n s'_0, ..., s'_n$ $A \cdot B \stackrel{\mathsf{def}}{=} \{ a \cdot b \mid a \in A \land b \in B \}$
- merging: $(s_0, ..., s)$; $(s, s'_1, ..., s'_n) \stackrel{\text{def}}{=} s_0, ..., ss'_1, ..., s'_n$ $A; B \stackrel{\text{def}}{=} \{a; b \mid a \in A \land b \in B\}$

Prefix Trace Semantics Finite Partial Program Traces Starting From $I \in \mathscr{P}(\Sigma)$

OPLSS 2025

Abstract Interpretation

Prefix Trace Semantics Least Fixpoint Formulation

$$\mathcal{T}_{p}(I) = \operatorname{lfp}_{\varnothing}^{\subseteq} F_{p}$$

$$F_{p}(T) \stackrel{\text{def}}{=} I \cup T; \tau$$

$$\mathsf{q} \in \mathsf{q}$$

•
$$F_p^0(\emptyset) = \emptyset$$

• $F_p^1(F_p^0) = I = \{a\}$
• $F_p^2(F_p^1) = \{a, ab\}$
 $I \stackrel{\text{def}}{=} \{a\}$ • $F_p^3(F_p^2) = \{a, ab, abb, abc\}$
 $\mathcal{T}_p(I) = \{a, ab^i, ab^ic \mid i \ge 1\}$

5

Forward Reachable State Abstraction

OPLSS 2025

Abstract Interpretation

State Semantics

Trace Semantics

Caterina Urban

Order Theory Galois Connections

A Galois connection between two posets (C, \leq) and (A, \subseteq) is a pair of an lower adjoint or abstraction function $\alpha: C \to A$ and a upper adjoint or concretization function $\gamma: A \to C$ such that: $\forall c \in C, a \in A \colon \alpha(c) \sqsubseteq a \Leftrightarrow c \leq \gamma(a)$

Abstract Interpretation

Order Theory Galois Connections

Example:

α

 $\begin{bmatrix} \det \\ = \\ (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{\infty\}) \\ (a,b) \sqsubseteq (c,d) \stackrel{\text{def}}{\Leftrightarrow} c \leq a \wedge b \leq d \\ \alpha(X) \stackrel{\text{def}}{=} (\min X, \max X) \\ \gamma((a,b)) \stackrel{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\} \end{bmatrix}$

OPLSS 2025

Abstract Interpretation

 $\langle \mathbb{I}, \sqsubseteq \rangle$

Forward Reachable State Abstraction

a state in the forward reachability semantics corresponds to a partial program trace ending in this state

 $\langle \mathscr{P}(\Sigma^*),$

approximation order

 α_{p}

 γ_p

 $\alpha_p(T) \stackrel{\text{def}}{=} \{ s \in \Sigma \mid \exists s_0, \dots, s \in T \}$ $\gamma_p(S) \stackrel{\text{def}}{=} \{s_0, \dots, s \in \Sigma^* \mid s \in S\}$

 $\langle \mathscr{P}(\Sigma), \subseteq \rangle$

Order Theory Total Orders

A binary relation $\sqsubseteq \in X \times X$ over a set X is called a total order when it is:

- reflexive $\forall x \in X \colon x \sqsubseteq x$
- antisymmetric $\forall x, y \in X: (x \sqsubseteq y) \land (y \sqsubseteq x) \Rightarrow x = y$
- transitive $\forall x, y, z \in X$: $(x \sqsubseteq y) \land (y \sqsubseteq z) \Rightarrow x \sqsubseteq z$
- total $\forall x, y, z \in X$: $(x \sqsubseteq y) \lor (y \sqsubseteq x)$

Order Theory Chains and Complete Partial Orders

A chain is a totally ordered subset C of a poset $\langle X, \sqsubseteq \rangle$

 $\langle X, \sqsubseteq \rangle$ is a complete partial order if every chain $C \subseteq X$ has a least upper bound C

Abstract Interpretation

OPLSS 2025

Caterina Urban

Order Theory Monotonic and Scott-Continuous Functions

A function $f: X_1 \to X_2$ between posets $\langle X_1, \leq \rangle$ and $\langle X_2, \sqsubseteq \rangle$ is

- monotonic when $\forall x, y \in X_1 : x \leq y \Rightarrow f(x) \sqsubseteq f(y)$
- Scott-continuous when it preserves least upper bounds: for each chain $X \subseteq X_1$, if $\bigvee X$ exists, then $f(\bigvee X) = \{f(x) \mid x \in X\}$

Order Theory Kleenian Fixpoint Transfer

Theorem

Let $\langle C, \leq \rangle$ and $\langle A, \sqsubseteq \rangle$ be complete partial orders, let $f: C \to C$ and $f^{\#}: A \to A$ be monotonic functions, and let $\alpha: C \to A$ be a Scott-continuous abstraction function that satisfies the commutation condition $\alpha \circ f = f^{\#} \circ \alpha$. Then, given $c \in C$, we have $\alpha(\operatorname{lfp}_{c}^{\leq} f) = \operatorname{lpf}_{\alpha(c)}^{\subseteq} f^{\#}$

Prefix Trace to Forward Reachability Kleenian Fixpoint Transfer

Prefix Trace Semantics

Exercise: prove this 🙂

Abstract Interpretation

$$\equiv \angle \mid \exists S_0, \dots, S \in I$$

s $\alpha_p \circ F_p = F_r \circ \alpha_p$

$$\mathbf{p}_{\varnothing}^{\subseteq}F_{p}) = \mathbf{lfp}_{\varnothing}^{\subseteq}F_{r} = \mathscr{R}(I)$$

Suffix Trace Semantics

OPLSS 2025

Abstract Interpretation

State Semantics

Trace Semantics

Suffix Trace Semantics Finite Partial Program Traces Ending in $F \in \mathscr{P}(\Sigma)$

Suffix Trace Semantics Least Fixpoint Formulation

$$\mathcal{T}_{s}(F) = \operatorname{lfp}_{\varnothing}^{\subseteq} F_{s}$$

$$F_{s}(T) \stackrel{\text{def}}{=} F \cup \tau; T$$

$$\mathsf{r} \in \mathsf{r}$$

•
$$F_s^0(\emptyset) = \emptyset$$

• $F_s^1(F_s^0) = F = \{c\}$
• $F_s^2(F_s^1) = \{c, bc\}$
 $F \stackrel{\text{def}}{=} \{c\}$ • $F_s^3(F_s^3) = \{c, bc, bbc, abc\}$
 $\mathscr{T}_s(I) = \{c, b^i c, ab^i c \mid i \ge 1\}$

Caterina Urban

Backward Reachable State Abstraction

OPLSS 2025

Abstract Interpretation

State Semantics

Trace Semantics

Backward Reachable State Abstraction

a state in the backward reachability semantics corresponds to a partial program trace starting in this state

 α_{s}

 $\alpha_{s}(T) \stackrel{\text{def}}{=} \{s \in \Sigma \mid \exists s, \dots, s_{n} \in T\}$ $\gamma_s(S) \stackrel{\text{def}}{=} \{s, \dots, s_n \in \Sigma^* \mid s \in S\}$

Caterina Urban

Suffix Trace to Backward Reachability Kleenian Fixpoint Transfer

Suffix Trace Semantics

$$\alpha_{s}(\mathcal{T}_{s}(F)) = \alpha_{s}(\mathbf{I}$$

Abstract Interpretation

OPLSS 2025

Partial Finite Trace Semantics

OPLSS 2025

Abstract Interpretation

State Semantics

Trace Semantics

Caterina Urban

Partial Finite Trace Semantics Partial Finite Program Traces

OPLSS 2025

Abstract Interpretation

Partial Finite Trace Semantics Least Fixpoint Formulation

Forward Formulation

$$\mathcal{T} = \operatorname{lfp}_{\varnothing}^{\subseteq} F_{p^*}$$
$$F_{p^*}(T) \stackrel{\operatorname{def}}{=} \Sigma \cup T; \tau$$

 $\mathcal{T} = \{a, ab^i, ab^ic, b^i, b^ic, c \mid i \ge 1\}$

Backward Formulation

$$\mathcal{T} = \operatorname{lfp}_{\varnothing}^{\subseteq} F_{s^*}$$
$$F_{s^*}(T) \stackrel{\operatorname{def}}{=} \Sigma \cup \tau; T$$

 $\mathcal{T} = \{a, ab^i, ab^i c, b^i, b^i c, c \mid i \ge 1\}$

Prefix/Suffix Trace Abstraction

OPLSS 2025

Abstract Interpretation

State Semantics

Trace Semantics

Prefix Trace Abstraction

Abstract Interpretation

$\alpha_F(T) \stackrel{\text{def}}{=} T \cap (\Sigma^* \cdot F)$ $\gamma_F(T) \stackrel{\text{def}}{=} T \cup (\Sigma^* \cdot (\Sigma \setminus F))$ γ_F

 α_F

Suffix Trace Abstraction

Maximal Trace Semantics

OPLSS 2025

Abstract Interpretation

State Semantics

Trace Semantics

Maximal Trace Semantics Finite and Infinite Program Traces

• $\mathcal{M} \in \mathscr{P}(\Sigma^{\infty})$

 $\mathscr{M} \stackrel{\text{def}}{=} \{s_0, \dots, s_n \in \Sigma^* \mid s_n \in \mathscr{B} \land \forall i \colon \langle s_i, s_{i+1} \rangle \in \tau\} \cup \{s_0, \dots \in \Sigma^\omega \mid \forall i \colon \langle s_i, s_{i+1} \rangle \in \tau\}$ $\mathscr{B} \stackrel{\mathsf{def}}{=} \{ s \in \Sigma \mid \forall s' \in \Sigma \colon \langle s, s' \rangle \notin \tau \}$

Abstract Interpretation

Order Theory Lattices

A lattice $\langle X, \sqsubseteq, \sqcup, \Pi \rangle$ is a partially ordered set with:

- a least upper bound $a \sqcup b$ for every pair of elements $a, b \in X$
- a greatest lower bound $a \sqcap b$ for every pair of elements $a, b \in X$

Order Theory Complete Lattices

A complete lattice $\langle X, \sqsubseteq, \Box, \Box, \neg, \bot, \top \rangle$ is a partially ordered set with:

- a least upper bound S for every $S \subseteq X$ (and
- a greatest lower bound S for every $S \subseteq X$ (

Example
$$\langle \mathscr{P}(\Sigma^{\infty}), \sqsubseteq, \sqcup, \sqcap, \Sigma^{\omega}, \Sigma^{*} \rangle$$

 $A \sqsubseteq B \stackrel{\text{def}}{\Leftrightarrow} (A \cap \Sigma^{*}) \subseteq (B \cap \Sigma^{*}) \land (A \cap \Sigma^{\omega}) \supseteq$
 $A \sqcup B \stackrel{\text{def}}{=} ((A \cap \Sigma^{*}) \cup (B \cap \Sigma^{*})) \cup ((A \cap \Sigma^{\omega}) \cap A \sqcap B \stackrel{\text{def}}{=} ((A \cap \Sigma^{*}) \cap (B \cap \Sigma^{*})) \cup ((A \cap \Sigma^{\omega}) \cup (A \cap \Sigma^{\omega})))$

OPLSS 2025

Abstract Interpretation

I thus
$$\perp \stackrel{\text{def}}{=} \bigcup \emptyset$$

(thus $\top \stackrel{\text{def}}{=} \bigcap \emptyset = \bigcup D$)

 $(B \cap \Sigma^{\omega})$ $(B \cap \Sigma^{\omega}))$ $(B \cap \Sigma^{\omega}))$

Maximal Trace Semantics Least Fixpoint Formulation

- $F^{0}(\emptyset) = \Sigma^{\omega}$ $F^{1}(F^{0}) = \{c\} \cup \{ab\Sigma^{\omega}, bb\Sigma^{\omega}, bc\Sigma^{\omega}\}$ $F^{2}(F^{1}) = \{bc, c\} \cup \{abb\Sigma^{\omega}, bbb\Sigma^{\omega}, abc\Sigma^{\omega}, bbc\Sigma^{\omega}\}$
 - $F_n^3(F_n^2) = \{abc, bbc, bc, c\} \cup \{abbb\Sigma^{\omega}, bbbb\Sigma^{\omega}, abbc\Sigma^{\omega}, bbbc\Sigma^{\omega}\}$

 $\mathscr{M} = \{ab^{i}c, b^{i}c, c \mid i \ge 1\} \cup \{ab^{\omega}, b^{\omega}\}$

Maximal Trace Semantics Denotational Formulation

 $\mathscr{M}[\![\ell_1 X \leftarrow e^{\ell_2}]\!]T \stackrel{\text{def}}{=} \{(\ell_1, \rho)(\ell_2, \rho[X \mapsto v])\sigma \mid \sigma \in \Sigma^{\infty}, (\ell_2, \rho[X \mapsto v])\sigma \in T, v \in E[\![e]\!]\rho\}$ $\mathscr{M}[[if \ \ell_1 e \bowtie 0 \text{ then } \ell_2 s^{\ell_3} \text{ end } \ell_4]]T \stackrel{\text{def}}{=}$ $\{(\ell_1,\rho)(\ell_4,\rho)\sigma \mid \sigma \in \Sigma^{\infty}, (\ell_4,\rho)\sigma \in T, \exists v \in E[[e]]\rho \colon v \bowtie 0\}$ $\mathscr{M}[[\text{while } \ell_1 e \bowtie 0 \text{ then } \ell_2 s^{\ell_3} \text{ done } \ell_4]]T \stackrel{\text{def}}{=} \text{Ifp}_{\Sigma_{\omega}}^{\sqsubseteq} F$ where $\mathscr{M}[[s_1;s_2]]T \stackrel{\mathsf{def}}{=} \mathscr{M}[[s_1]](\mathscr{M}[[s_2]]S)$

stmt ::= $\ell X \leftarrow expr^{\ell}$ | if $\ell expr \bowtie 0$ then stmt end ℓ while $\ell expr \bowtie 0$ do stmt done ℓ stmt; stmt

 $\{(\ell_1,\rho)(\ell_2,\rho)\sigma \mid \sigma \in \Sigma^{\infty}, (\ell_2,\rho)\sigma \in \mathscr{C}[[\ell_2s^{\ell_3}]]\{(\ell_3,\rho')\sigma' \mid \sigma' \in T\}, \exists v \in E[[e]]\rho \colon v \bowtie 0\} \cup$

 $\{(\ell_1,\rho)(\ell_2,\rho)\sigma \mid \sigma \in \Sigma^{\infty}, (\ell_2,\rho)\sigma \in \mathscr{M}[[\ell_2 s^{\ell_3}]]\{(\ell_3,\rho')\sigma' \mid \sigma' \in Y\}, \exists v \in E[[e]]\rho \colon v \bowtie 0\}$

Partial Finite Trace Abstraction

OPLSS 2025

Abstract Interpretation

State Semantics

Trace Semantics

Order Theory Galois Connections

Given a Galois connection between two posets $\langle C, \leq \rangle$ and $\langle A, \sqsubseteq \rangle$, each adjoint can be uniquely defined in term of the other:

 $\forall c \in C, \alpha(c) = \sqcap \{a \in A \mid c \le \gamma(a)\}$

 $\forall a \in A, \gamma(a) = \vee \{c \in C \mid \alpha(c) \sqsubseteq a\}$

Abstract Interpretation

Partial Finite Trace Abstraction

Partial Trace Abstraction $\alpha_{\leq}(T) \stackrel{\mathsf{def}}{=} \{ \sigma \in \Sigma^{\infty} \mid \exists \sigma' \in \Sigma^{\infty} \colon \sigma \circ \sigma' \in T \} \blacktriangleleft$

Finite Trace Abstraction $\alpha_*(T) \stackrel{\text{def}}{=} T \cap \Sigma^*$ $\gamma_*(S) \stackrel{\text{def}}{=} T \cup \Sigma^{\omega}$

OPLSS 2025

Hierarchy of Semantics

OPLSS 2025

Abstract Interpretation

- **Forward/Backward Reachability Semantics**
- **Forward/Backward Reachable State Abstraction**
- **Prefix/Suffix Trace Semantics**
- **Prefix/Suffix Trace Abstraction**
- **Partial Finite Trace Semantics**
- **Partial Finite Trace Abstraction**
- **Maximal Trace Semantics**

Reading Suggestion

Constructive design of a hierarchy of semantics of a transition system by abstract interpretation

Département d'Informatique, École Normale Supérieure, 45 rue d'Ulm, 75230 Paris cedex 05, France

Abstract

We construct a hierarchy of semantics by successive abstract interpretations. Starting from the maximal trace semantics of a transition system, we derive the big-step semantics, termination and nontermination semantics, Plotkin's natural, Smyth's demoniac and Hoare's angelic relational semantics and equivalent nondeterministic denotational semantics (with alternative powerdomains to the Egli-Milner and Smyth constructions), D. Scott's deterministic denotational semantics, the generalized and Dijkstra's conservative/liberal predicate transformer semantics, the generalized/total and Hoare's partial correctness axiomatic semantics and the corresponding proof methods. All the semantics are presented in a uniform fixpoint form and the correspondences between these semantics are established through composable Galois connections, each semantics being formally calculated by abstract interpretation of a more concrete one using Kleene and/or Tarski fixpoint approximation transfer theorems. © 2002 Elsevier Science B.V. All rights reserved.

Theoretical **Computer Science**

Theoretical Computer Science 277 (2002) 47–103

www.elsevier.com/locate/tcs

Patrick Cousot¹

Static Analysis by Abstract Interpretation Program Properties

practical tools targeting specific programs

abstract semantics, abstract domains algorithmic approaches to decide program properties

concrete semantics mathematical models of the program behavior

OPLSS 2025

Abstract Interpretation

PROPERTY OF INTEREST

State Properties

```
1
a \leftarrow [0, +\infty]
2
b \leftarrow [0, +\infty]
3
q ← 0
r ← a
5
while {}^{6}(r \ge b) do
    7
   r \leftarrow r - b
    8
   q \leftarrow q + 1
    9
done
10
```

Example

• $S \stackrel{\mathsf{def}}{=} \{ \langle \ell, \rho \rangle \in \Sigma \mid \ell \in \mathcal{L}, \rho \in \mathcal{E}, \rho(r) \ge 0 \}$

State Property Verification

72

 $\mathscr{R}(I) \subseteq S$ $\mathscr{C}(F) \subseteq S$
Trace Properties

Example

- Termination: $T \stackrel{\text{def}}{=} \Sigma^*$
- Non-Termination: $T \stackrel{\text{def}}{=} \Sigma^{\omega}$
- Any State Property $S \in \mathscr{P}(\Sigma)$: $T \stackrel{\text{def}}{=} S^{\infty}$

Trace Property Verification

 $T \in \mathscr{P}(\Sigma^{\infty})$

Caterina Urban

Trace Properties Safety Properties = "Nothing Bad Ever Happens"

Example

• Any State Property $S \in \mathscr{P}(\Sigma)$: $T \stackrel{\text{def}}{=} S^{\infty}$

Safety Property Verification

• T can be verified by exhaustive testing

• T can be falsified by finding a single finite execution not in T

Abstract Interpretation

$T \in \mathscr{P}(\Sigma^{\infty})$

 $\mathcal{T}_p(I) \subseteq T$

Caterina Urban

Trace Properties $T \in \mathscr{P}(\Sigma^{\infty})$ Liveness Properties = "Something Good Eventually Happens"

Example

• Termination: $T \stackrel{\text{def}}{=} \Sigma^*$

Liveness Property Verification

• T cannot be **verified** by **testing**

falsifying T requires finding an infinite execution not in T

Abstract Interpretation

 $\mathcal{M} \subseteq T$

Caterina Urban

Program Properties

Example

• Determinism: $P \stackrel{\text{def}}{=} \{ \{ \sigma \} \mid \sigma \in \Sigma^{\infty} \}$

Program Property Verification

Abstract Interpretation

 $\mathscr{M} \in P \Leftrightarrow \{\mathscr{M}\} \subseteq P$

Collecting Semantics

Caterina Urban

Collecting Semantics Intuition

Property (by extension): set of elements that have that property

Property "being Zena"

Abstract Interpretation

Property "being program P"

Hierarchy of Mathematical Objects

OPLSS 2025

Abstract Interpretation

Caterina Urban

Static Analysis by Abstract Interpretation Abstract Program Semantics

practical tools targeting specific programs

abstract semantics, abstract domains algorithmic approaches to decide program properties

concrete semantics mathematical models of the program behavior

Abstract Interpretation

Caterina Urban

Abstract Interpretation

OPLSS 2025

Abstract Forward Reachability Semantics

OPLSS 2025

Abstract Interpretation

Abstract Forward Reachability Semantics Over-Approximation of Program States Reachable From $I \in \mathscr{P}(\Sigma)$

• $\mathscr{R}(I) \subseteq \gamma(\mathscr{R}^{\#}(I)) \in \mathscr{P}(\Sigma)$

Abstract Interpretation

Abstract Forward Reachability Semantics Denotational Formulation

 $\mathscr{R}^{\#}[[\ell_1 X \leftarrow e^{\ell_2}]](\ell_1, a) \stackrel{\text{def}}{=} (\ell_2, \text{ASSIGN}_A[[X \leftarrow e]]a)$ $\mathscr{R}^{\#}[[\text{if } \ell_1 e \bowtie 0 \text{ then } \ell_2 s^{\ell_3} \text{ end } \ell_4]](\ell_1, a) \stackrel{\text{def}}{=} (\ell_4, a') \sqcup_A (\ell_4, \text{FILTER}_A[[e \bowtie 0]]a)$ where $(\ell_3, a') = \mathscr{R}^{\#}[[\ell_2 s \ell_3]](\ell_2, \text{FILTER}_A[[e \bowtie 0]]a])$ \mathscr{R} [while $\ell_1 e \bowtie 0$ then $\ell_2 s \ell_3$ done ℓ_4] $(\ell_1, a) \stackrel{\text{de}}{=}$ where $(\ell_1, a') = \operatorname{lfp}^{\# \sqsubseteq_A}_{(\ell_1, \bot_A)} F_r^{\#}$ $F_r^{\natural}((\ell_1, y)) \stackrel{\text{def}}{=} (\ell_1, a) \sqcup_A (\ell_1, a'')$ $(\ell_3, a'') = \mathscr{R}^{\#}[[\ell_2 s^{\ell_3}]](\ell_2, \text{FILTER}_A[[e \bowtie 0]]y])$ $\mathscr{R}^{\#}[[s_1; s_2]](\ell_1, a) \stackrel{\text{def}}{=} \mathscr{R}^{\#}[[s_2]](\mathscr{R}^{\#}[[s_1]](\ell_1, a))$

$$\stackrel{\text{ef}}{=} (\ell_4, \text{FILTER}_A \llbracket e \bowtie 0 \rrbracket a')$$

$$stmt ::= {}^{\ell}X \leftarrow expr^{\ell}$$

$$| if {}^{\ell}expr \bowtie 0 \text{ then } stmt \text{ end}^{\ell}$$

$$| while {}^{\ell}expr \bowtie 0 \text{ do } stmt \text{ do}$$

$$| stmt; stmt$$

Caterina Urban

Static Analysis by Abstract Interpretation

OPLSS 2025

SOUNDNESS

I A WEI DO LA VIDE

COMPLETENESS

Caterina Urban

State Properties

```
1
a \leftarrow [0, +\infty]
b \leftarrow [0, +\infty]
3
q ← 0
r ← a
5
while {}^{6}(r \ge b) do
    7
   r \leftarrow r - b
    8
   q \leftarrow q + 1
    9
done
10
```

Example

• $S \stackrel{\text{def}}{=} \{ \langle \ell, \rho \rangle \in \Sigma \mid \ell \in \mathcal{L}, \rho \in \mathcal{E}, \rho(r) \ge 0 \}$

Sound State Property Verification

 $\mathscr{R}(I) \subseteq \gamma(\mathscr{R}^{\natural}(I)) \subseteq S$

Caterina Urban

Static Analysis by Abstract Interpretation Abstract Domains

practical tools targeting specific programs

abstract semantics, abstract domains algorithmic approaches to decide program properties

concrete semantics mathematical models of the program behavior

OPLSS 2025

Abstract Interpretation

Caterina Urban

Numerical Abstract Domains

Non-Relational Domains

Relational Domains

OPLSS 2025

Abstract Interpretation

Sign Domain

Interval Domain

Polyhedra Domain

Caterina Urban

Numerical Abstract Domains

Non-Relational Domains

Relational Domains

OPLSS 2025

Abstract Interpretation

Sign Domain

Interval Domain

Polyhedra Domain

Sign Abstract Domain **Concrete Value are Replaced with Sign Values**

OPLSS 2025

Abstract Interpretation

concrete values

sign value

Sign Abstract Domain

OPLSS 2025

maps variables to their sign

 $ASSIGN_A[[X \leftarrow e]]a$ maps X to e evaluated according to the sign rules > 0 + > 0 = > 0 - < 0 = > 0< 0 + < 0 = < 0 - > 0 = < 0

FILTER_A[[$e \bowtie 0$]]a modifies a to satisfy $e \bowtie 0$

Abstract Interpretation

- defined by the diagram
- defined by the diagram
- defined by the diagram

Sign Abstract Domain

 $A: X \rightarrow Sign$ maps variables to their sign

 $\gamma': A \to \mathscr{P}(\mathscr{E}) \quad \gamma'(a) \stackrel{\mathsf{def}}{=} \{ \rho \in \mathscr{E} \mid \forall x \in \mathbb{X} : \rho(x) \in \gamma_{\mathsf{Sign}}(a(x)) \}$ $\gamma \colon \mathscr{L} \times A \to \mathscr{P}(\Sigma) \quad \gamma((\mathscr{\ell}, a)) \stackrel{\mathsf{def}}{=} \{ (\mathscr{\ell}, \rho) \in \Sigma \mid \rho(x) \in \gamma'(a) \}$

OPLSS 2025

Abstract Interpretation

$\gamma_{\text{Sign}} \colon \text{Sign} \to \mathscr{P}(\mathbb{Z})$ $\gamma_{\text{Sign}}(\perp) \stackrel{\text{def}}{=} \emptyset$ $\gamma_{\text{Sign}}(0) \stackrel{\text{def}}{=} \{0\}$

 $\gamma_{\text{Sign}}(\top) \stackrel{\text{def}}{=} \mathbb{Z}$

Sign Static Analysis

OPLSS 2025

Abstract Interpretation

$S \stackrel{\text{def}}{=} \{ \langle \ell, \rho \rangle \in \Sigma \mid \ell \in \mathcal{L}, \rho \in \mathcal{E}, \rho(r) \ge 0 \}$ $\gamma(\mathscr{R}^{\operatorname{q}}(I)) \not\subset S$ $\mathbf{F}: a \mapsto \geq 0 \quad b \mapsto \geq 0 \quad q \mapsto 0 \quad r \mapsto \geq 0$ **FALSE ALARM** $\bullet : a \mapsto \ge 0 \quad b \mapsto \ge 0 \quad q \mapsto 0 \quad r \mapsto \ge 0$ $r: a \mapsto \geq 0 \quad b \mapsto \geq 0 \quad q \mapsto 0 \quad r \mapsto \geq 0$ $\mathbf{z}^{\mathbf{8}}: a \mapsto \geq 0 \quad b \mapsto \geq 0 \quad q \mapsto 0 \quad r \mapsto \mathsf{T}$ $\bullet : a \mapsto \ge 0 \quad b \mapsto \ge 0 \quad q \mapsto > 0 \quad r \mapsto \mathsf{T}$ $r \mapsto \top$ $\cdots \rightarrow 7: a \mapsto \geq 0 \quad b \mapsto \geq 0 \quad q \mapsto \geq 0 \quad r \mapsto \geq 0$ $... \bullet : a \mapsto \ge 0 \quad b \mapsto \ge 0 \quad q \mapsto > 0 \quad r \mapsto \top$ $r \mapsto \top$

Static Analysis by Abstract Interpretation

OPLSS 2025

\$10 + **\$40** + **\$ 25** + 5 S \$80

\$ 9.95 + \$ 35.85 + \$ 24.95 + \$ 4.85

\$75.60

Numerical Abstract Domains

Non-Relational Domains

Relational Domains

OPLSS 2025

Abstract Interpretation

Sign Domain

Interval Domain

Polyhedra Domain

Caterina Urban

Interval Abstract Domain Concrete Value are Replaced with Range Values

OPLSS 2025

Abstract Interpretation

concrete values

sign value

interval value

Interval Abstract Domain

maps variables to their lower and upper bounds

- defined by the diagram
- defined by the diagram
- defined by the diagram

 $ASSIGN_A[[X \leftarrow e]]a$

maps X to e evaluated with interval arithmetic

FILTER_A[[$e \bowtie 0$]]a modifies a to satisfy $e \bowtie 0$

loosens the unstable bounds $[0, 1] \nabla_A [0, 2] = [0, \infty]$ $[0, 1] \nabla_A [-1, 1] = [-\infty, 1]$

Interval Abstract Domain

 $A: X \rightarrow Itv$ maps variables to their lower and upper bounds

OPLSS 2025

$$\gamma_{\mathsf{ltv}}(\bot) \stackrel{\mathsf{def}}{=} \emptyset$$
$$\gamma_{\mathsf{ltv}}([a,b]) \stackrel{\mathsf{def}}{=} \{x \in \mathbb{Z} \mid a \le x \le b\}$$
$$\vdots$$
$$\gamma_{\mathsf{ltv}}([\infty,\infty]) \stackrel{\mathsf{def}}{=} \mathbb{Z}$$

 $\gamma'(a) \stackrel{\mathsf{def}}{=} \{ \rho \in \mathscr{E} \mid \forall x \in \mathbb{X} \colon \rho(x) \in \gamma_{\mathsf{ltv}}(a(x)) \}$

$\gamma((\ell, a)) \stackrel{\mathsf{def}}{=} \{ (\ell, \rho) \in \Sigma \mid \rho(x) \in \gamma'(a) \}$

Interval Static Analysis

1	$a \mapsto [0,\infty]$	$b \mapsto$
a ← [0, +∞]	\cdots 4 : $a \mapsto [0,\infty]$	$b \mapsto$
2	\cdots 5: $a \mapsto [0,\infty]$	$b \mapsto$
$b \leftarrow [0, +\infty]$	\cdots $a \mapsto [0,\infty]$	$b \mapsto$
$\mathbf{Q} \leftarrow \mathbf{Q}$	$a \mapsto [0,\infty]$	$b \mapsto$
4	$a \mapsto [0,\infty]$	$b \mapsto$
r←a	$a \mapsto [0,\infty]$	$b \mapsto$
5	$\bullet \bullet a \mapsto [0,\infty]$	$b \mapsto$
while ⁶ (r ≥ b) do	$a \mapsto [0,\infty]$	$b \mapsto$
$\mathbf{r} \leftarrow \mathbf{r} - \mathbf{b}$	$a \mapsto [0,\infty]$	$b \mapsto$
8	$a \mapsto [0,\infty]$	$b \mapsto$
$q \leftarrow q + 1$	• • • $[0,\infty]$	$b \mapsto$
9 • • • •		
done 10 ·····	$\dots \rightarrow 10: a \mapsto [0,\infty]$	<i>b</i> ⊦

$\rightarrow [0,\infty] \quad q \mapsto [0,\infty] \quad r \mapsto [-\infty,\infty]$

- $\rightarrow [0,\infty] \quad q \mapsto [0,\infty] \quad r \mapsto [-\infty,\infty]$
- $\rightarrow [0,\infty] \quad q \mapsto [1,2] \quad r \mapsto [-\infty,\infty]$
- $\rightarrow [0,\infty] \quad q \mapsto [0,1] \quad r \mapsto [-\infty,\infty]$
- $\rightarrow [0,\infty] \quad q \mapsto [0,1] \quad r \mapsto [0,\infty]$
- $\rightarrow [0,\infty] \quad q \mapsto [0,1] \quad r \mapsto [-\infty,\infty]$
- $\rightarrow [0,\infty] \quad q \mapsto [1,1] \quad r \mapsto [-\infty,\infty]$
- $\rightarrow [0,\infty] \quad q \mapsto [0,0] \quad r \mapsto [-\infty,\infty]$
- $\rightarrow [0,\infty] \quad q \mapsto [0,0] \quad r \mapsto [0,\infty]$
- $\begin{array}{ll} \rightarrow & [0,\infty] & q \mapsto & [0,0] & r \mapsto & [0,\infty] \\ \rightarrow & [0,\infty] & q \mapsto & [0,0] & r \mapsto & [0,\infty] \end{array}$

- $\rightarrow [0,\infty] \quad q \mapsto [0,0]$
- $\rightarrow [0,\infty]$
- $S \stackrel{\mathsf{def}}{=} \{ \langle \ell, \rho \rangle \in \Sigma \mid \ell \in \mathcal{L}, \rho \in \mathcal{E}, \rho(r) \ge 0 \}$

- **FALSE ALARM**

Numerical Abstract Domains

Non-Relational Domains

Relational Domains

OPLSS 2025

Abstract Interpretation

Sign Domain

Interval Domain

Polyhedra Abstract Domain **Concrete Value are Replaced with Conjunctions of Linear Inequalities**

OPLSS 2025

Abstract Interpretation

concrete values

sign value

interval value

★polyhedra value

Caterina Urban

Polyhedra Abstract Domain

set of convex polyhedra

inclusion check

convex hull

Polyhedra Abstract Domain

set of convex polyhedra

 $\gamma': A \to \mathscr{P}(\mathscr{E})$ set of memory states within the polyhedra

 $\gamma \colon \mathscr{L} \times A \to \mathscr{P}(\Sigma) \quad \gamma((\mathscr{\ell}, a)) \stackrel{\mathsf{def}}{=} \{(\mathscr{\ell}, \rho) \in \Sigma \mid \rho(x) \in \gamma'(a)\}$

Abstract Interpretation

Polyhedra Static Analysis $S \stackrel{\text{def}}{=} \{ \langle \ell, \rho \rangle \in \Sigma \mid \ell \in \mathcal{L}, \rho \in \mathcal{E}, \rho(r) \ge 0 \}$ $a \ge 0 \land b \ge 0$ $\mathscr{R}(I) \subseteq \gamma(\mathscr{R}^{\natural}(I)) \subseteq S$

Reading Suggestion

Full text available at: http://dx.doi.org/10.1561/250000034

Foundations and Trends[®] in Programming Languages Vol. 4, No. 3-4 (2017) 120–372 © 2017 A. Miné DOI: 10.1561/250000034

Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation

Antoine Miné Sorbonne Universités, UPMC Univ. Paris 06, CNRS, LIP6 antoine.mine@lip6.fr

Abstract Interpretation

OPLSS 2025

Caterina Urban

Static Analysis by Abstract Interpretation Static Analyzers

practical tools targeting specific programs

abstract semantics, abstract domains algorithmic approaches to decide progran

concrete semantics mathematical models of the program behavior

OPLSS 2025

Abstract Interpretation

Who uses Astrée?

Since 2003, Airbus France has been using Astrée in the development of safety-critical software for various aircraft series, including the A380.

In 2018, Bosch Automotive Steering replaced their legacy tools with Astrée and RuleChecker, resulting in significant savings thanks to faster analyses, higher accuracy, and optimized licensing and support costs.

Framatome employs Astrée for verification of their safety-critical TELEPERM XS platform that is used for engineering, testing, commissioning, operating and troubleshooting nuclear reactors.

The global automotive supplier Helbako in Germany is using Astrée to guarantee that no runtime errors can occur in their electronic control software and to demonstrate MISRA compliance of the code.

In 2008, Astrée proved the absence of any runtime errors in a C version of the automatic docking software of the Jules Verne Automated Transfer Vehicle, enabling ESA to transport payloads to the International Space Station.

A world leader in motors and ventilators for air-conditioning and refrigeration systems, ebm-papst is using Astrée for fully automatic continuous verification of safety-critical interrupt-driven control software for commutating highefficiency EC motors for ventilator systems.

Exploitation license of Astrée

Starting Dec. 2009, Astrée is available from AbsInt Angewandte Informatik Absint (www.absint.de/astree/).

Abstract Interpretation

AIRBUS BOSCH

framatome

HELBAKO

ebmpapst

Infer Facebook / Mo	eta	facebook / infer de ③ Issues 407 11 Pull requ infer Public main
Who Uses Infer?		
AdaCore	amazon web services	facebool
moz://a	oculus	Osonatype
WhatsApp		
CodeAl	JD.com	Marks and Spencer
Sky	Tile	Vuo
		FILES.md

•••

[infor][DD] fiv link to EAO in iccus to

Apron Library

📃 🔿 antoinemine / apron	
<> Code ③ Issues ⑨ 11 Pull requests 2	Actions
apron Public	
위 master → 위 28 Branches ♡ 8	8 Tags
antoinemine typos	
apron 🖿	
apronxx	
avoct	
box	
examples	

🧧 😑 🕤 💌 < 🔿

Introduction

Apron is a library to represent properties of numeric variables, such as variable bounds or linear relations between variables, and to manipulate these properties through semantic operations, such as variable assignments, tests, conjunctions, entailment.

Apron is intended to be used in static program analyzers, in order to infer invariants of numeric variables, i.e., properties that hold for all executions of a program. It is based on the theory of Abstract Interpretation.

The library is open-source, and hosted on GitHub.

Abstract Interpretation

OPLSS 2025

APRON

Numerical Abstract Domain Library

