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The pursuit of responsible AI raises the ante 
on both the trustworthy computing and formal 
methods communities. 

BY JEANNETTE M. WING

F O R  C E R TA I N  TA S K S ,  AI systems have achieved good 
enough performance to be deployed in our streets 
and our homes. Object recognition helps modern 
cars see. Speech recognition helps personalized 
voice assistants, such as Siri and Alexa, converse. 
For other tasks, AI systems have even exceeded 
human performance. AlphaGo was the first computer 
program to beat the best Go player in the world.

The promise of AI is huge. They will drive our 
cars. They will help doctors diagnose disease more 
accurately.54 They will help judges make more 
consistent court decisions. They will help employers 
hire more suitable job candidates.

However, we know these AI systems can be brittle 
and unfair. Adding graffiti to a stop sign fools the 
classifier into saying it is not a stop sign.22 Adding noise 
to an image of a benign skin lesion fools the classifier 
into saying it is malignant.23 Risk assessment tools 
used in U.S. courts have shown to be biased against 
blacks.4 Corporate recruiting tools have been shown to 
be biased against women.17

How then can we deliver on the promise of the 
benefits of AI but address these scenarios that have 

life-critical consequences for people 
and society? In short, how can we 
achieve trustworthy AI?

The ultimate purpose of this article 
is to rally the computing community 
to support a broad-based, long-term 
research program on trustworthy AI, 
drawing on the expertise and sensibili-
ties from multiple research communi-
ties and stakeholders. This article fo-
cuses on addressing three key research 
communities because: trustworthy 
AI adds new desired properties above 
and beyond those for trustworthy com-
puting; AI systems require new formal 
methods techniques, and in particu-
lar, the role of data raises brand new 
research questions; and AI systems 
can likely benefit from the scrutiny of 
formal methods for ensuring trustwor-
thiness. By bringing together research-
ers in trustworthy computing, formal 
methods, and AI, we aim to foster a 
new research community across aca-
demia, industry, and government in 
trustworthy AI.

From Trustworthy Computing 
to Trustworthy AI
The landmark Trust in Cyberspace 1999 
National Academies report lay the 
foundations of trustworthy computing 
and what continues to be an active re-
search area.41

Around the same time, the National 
Science Foundation started a series 
of programs on trust. Starting with 

Trustworthy 
AI

 key insights
 ˽ The set of trustworthiness properties 

for AI systems, in contrast to traditional 
computing systems, needs to be extended 
beyond reliability, security, privacy, and 
usability to include properties such as 
probabilistic accuracy under uncertainty, 
fairness, robustness, accountability, and 
explainability.

 ˽ To help ensure their trustworthiness, AI 
systems can benefit from the scrutiny of 
formal methods.

 ˽ AI systems raise the bar on formal 
methods for two key reasons: the 
inherent probabilistic nature of machine-
learned models, and the critical role of 
data in training, testing, and deploying a 
machine-learned model.

http://dx.doi.org/10.1145/3448248
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 ˲ Privacy: Does the system protect a 
person’s identity and data?

 ˲ Availability: Is the system up when 
I need to access it?

 ˲ Usability: Can a human use it easily?
The computing systems for which 

we want such properties to hold are 
hardware and software systems, in-
cluding their interaction with humans 
and the physical world. Academia and 
industry have made huge strides in 
trustworthy computing in the past 
decades. However, as technology ad-
vances and as adversaries get more 
sophisticated, trustworthy computing 
remains a holy grail.

AI systems raise the bar in terms 
of the set of properties of interest. In 
addition to the properties associated 
with trustworthy computing (as noted), 

Trusted Computing (initiated in 2001), 
then Cyber Trust (2004), then Trust-
worthy Computing (2007), and now 
Secure and Trustworthy Cyberspace 
(2011), the Computer and Information 
Science and Engineering Directorate 
has grown the academic research com-
munity in trustworthy computing. Al-
though it started within the computer 
science community, support for re-
search in trustworthy computing now 
spans multiple directorates at NSF and 
engages many other funding organi-
zations, including, through the Net-
working and Information Technology 
Research and Development (NITRD) 
Program, 20 federal agencies.

Industry has also been a leader and 
active participant in trustworthy com-
puting. With Bill Gates’s January 2002 

“Trustworthy Computing” memo,26 
Microsoft signaled to its employees, 
customers, shareholders, and the rest 
of the information technology sector 
the importance of trustworthy software 
and hardware products. It referred 
to an internal Microsoft white paper, 
which identified four pillars to trust-
worthiness: security, privacy, reliabil-
ity, and business integrity.

After two decades of investment 
and advances in research and develop-
ment, trustworthy has come to mean a 
set of (overlapping) properties:

 ˲ Reliability: Does the system do the 
right thing?

 ˲ Safety: Does the system do no 
harm?

 ˲ Security: How vulnerable is the sys-
tem to attack?
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might be a concurrent program that 
uses locks for synchronization and P 
might be “deadlock free.” A proof that 
M is deadlock free means any user of 
M is assured that M will never reach a 
deadlocked state. To prove that M sat-
isfies P, we use formal mathematical 
logics, which are the basis of today’s 
scalable and practical verification 
tools such as model checkers, theo-
rem provers, and satisfiability modulo 
theories (SMT) solvers.

Especially when M is a concurrent, 
distributed, or reactive system, in tra-
ditional formal methods, we often add 
explicitly a specification of a system’s 
environment E in the formulation of 
the verification task:

  E, M  P
For example, if M is a parallel pro-

cess, E might be another process with 
which M interacts (and then we might 
write E ⏐⏐ M  P, where ⏐⏐ stands for par-
allel composition). Or, if M is device 
driver code, E might be a model of the 
operating system. Or, if M is a control 
system, E might be a model of its envi-
ronment that closes the control loop. 
The specification of E is written to 
make explicit the assumptions about 
the environment in which the system 
is to be verified.

For verifying AI systems, M could 
be interpreted to be a complex sys-
tem, for example, a self-driving car, 
within which is a component that is a 
machine-learned model, for example, 
a computer vision system. Here, we 
would want to prove P, for example, 
safety or robustness, with respect to 
M (the car) in the context of E (traffic, 
roads, pedestrians, buildings, and so 
on). We can view proving P as prov-
ing a “system-level” property. Seshia 
et al. elaborate on the formal specifi-
cation challenges with this perspec-
tive,51 where a deep neural network 
might be a black-box component of 
the system M.

But what can we assert about the 
machine learned model, for example, 
a DNN, that is a critical component 
of the system? Is there a robustness 
or fairness property we can verify of 
the machine-learned model itself? 
Are there white-box verification tech-
niques that can take advantage of 
the structure of the machine learned 
model? Answering these questions 
raises new verification challenges.

we also want (overlapping) properties 
such as:

 ˲ Accuracy: How well does the AI 
system do on new (unseen) data com-
pared to data on which it was trained 
and tested?

 ˲ Robustness: How sensitive is the 
system’s outcome to a change in the 
input?

 ˲ Fairness: Are the system outcomes 
unbiased?

 ˲ Accountability: Who or what is re-
sponsible for the system’s outcome?

 ˲ Transparency: Is it clear to an ex-
ternal observer how the system’s out-
come was produced?

 ˲ Interpretability/Explainability: 
Can the system’s outcome be justified 
with an explanation that a human can 
understand and/or that is meaningful 
to the end user?

 ˲ Ethical: Was the data collected in 
an ethical manner? Will the system’s 
outcome be used in an ethical manner?

 ˲ …and others, yet to be identified
The machine learning community 

considers accuracy as a gold standard, 
but trustworthy AI requires us to ex-
plore trade-offs among these prop-
erties. For example, perhaps we are 
willing to give up on some accuracy in 
order to deploy a fairer model. Also, 
some of the above properties may have 
different interpretations, leading to 
different formalizations. For example, 
there are many reasonable notions 
of fairness,40 including demographic 
parity, equal odds, and individual fair-
ness,20 some of which are incompatible 
with each other.12,33

Traditional software and hardware 
systems are complex due to their size 
and the number of interactions among 
their components. For the most part, 
we can define their behavior in terms 
of discrete logic and as deterministic 
state machines.

Today’s AI systems, especially those 
using deep neural networks, add a di-
mension of complexity to traditional 
computing systems. This complexity 
is due to their inherent probabilistic 
nature. Through probabilities, AI sys-
tems model the uncertainty of human 
behavior and the uncertainty of the 
physical world. More recent advances 
in machine learning, which rely on big 
data, add to their probabilistic nature, 
as data from the real world are just 
points in a probability space. Thus, 

trustworthy AI necessarily directs our 
attention from the primarily determin-
istic nature of traditional computing 
systems to the probabilistic nature of 
AI systems.

Verify, to Trust
How can we design, implement, and 
deploy AI systems to be trustworthy?

One approach for building end-
user trust in computing systems is 
formal verification, where properties 
are proven once and for all over a large 
domain, for example, for all inputs to 
a program or for all behaviors of a con-
current or distributed system. Alterna-
tively, the verification process identi-
fies a counterexample, for example, an 
input value where the program produc-
es the wrong output or a behavior that 
fails to satisfy the desired property, 
and thus provides valuable feedback 
on how to improve the system. Formal 
verification has the advantage of obvi-
ating the need to test individual input 
values or behaviors one-by-one, which 
for large (or infinite) state spaces is im-
possible to achieve completely. Early 
success stories in formal methods, for 
example, in verifying cache coherence 
protocols48 and in detecting device 
driver bugs,5 led to their scalability and 
practicality today. These approaches 
are now used in the hardware and 
software industry, for example, Intel,29 
IBM,6 Microsoft,5 and Amazon.15,44 
Due to advances in formal methods 
languages, algorithms, and tools, and 
to the increased scale and complex-
ity of hardware and software, we have 
seen in the past few years a new surge 
of interest and excitement in formal 
verification, especially for ensuring the 
correctness of critical components of 
system infrastructure.7,10,11,15,27,30,34,49

Formal verification is a way to pro-
vide provable guarantees and thus in-
crease one’s trust that the system will 
behave as desired.

From traditional formal methods to 
formal methods for AI. In traditional 
formal methods, we want to show that 
a model M satisfies () a property P.

  M  P
M is the object to be verified—be 

it a program or an abstract model of a 
complex system, for example, a concur-
rent, distributed, or reactive system. P 
is the correctness property, expressed 
in some discrete logic. For example, M 
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Verifying a machine-learned model M. 
For verifying an ML model, we reinter-
pret M and P: M stands for a machine-
learned model. P stands for a trust-
worthy property, for example, safety, 
robustness, privacy, or fairness.

Verifying AI systems ups the ante 
over traditional formal methods. There 
are two key differences: the inherent 
probabilistic nature of the machine-
learned model and the role of data.

The inherent probabilistic nature of M 
and P, and thus the need for probabilistic 
reasoning (). The ML model, M, itself 
is semantically and structurally differ-
ent from a typical computer program. 
As mentioned, it is inherently proba-
bilistic, taking inputs from the real 
world, that are perhaps mathemati-
cally modeled as a stochastic process, 
and producing outputs that are associ-
ated with probabilities. Internally, the 
model itself operates over probabili-
ties; for example, labels on edges in a 
deep neural network are probabilities 
and nodes compute functions over 
these probabilities. Structurally, be-
cause a machine generated the ML 
model, M itself is not necessarily some-
thing human readable or comprehen-
sible; crudely, a DNN is a complex 
structure of if-then-else statements 
that would unlikely ever be written by 
a human. This “intermediate code” 
representation opens up new lines of 
research in program analysis.

The properties P themselves may be 
formulated over continuous, not (just) 
discrete domains, and/or using expres-
sions from probability and statistics. 
Robustness properties for deep neural 
networks are characterized as predi-
cates over continuous variables.18 Fair-
ness properties are characterized in 
terms of expectations with respect to 
a loss function over reals (for example, 
see Dwork et al.20). Differential privacy 
is defined in terms of a difference in 
probabilities with respect to a (small) 
real value.21 Note that just as with prop-
erties such as usability for trustworthy 
computing, some desired properties 
of trustworthy AI systems, for example, 
transparency or ethics, have yet to be 
formalized or may not be formalizable. 
For such properties, a framework that 
considers legal, policy, behavioral and 
social rules and norms could provide 
the context within which a formaliz-
able question can be answered. In 

short, verification of AI systems will be 
limited to what can be formalized.

These inherently probabilistic 
models M and associated desired trust 
properties P call for scalable and/or 
new verification techniques that work 
over reals, non-linear functions, prob-
ability distributions, stochastic pro-
cesses, and so on. One stepping-stone 
to verifying AI systems is probabilistic 
logics and hybrid logics (for example, 
Alur et al.,3 Kwiatkowska et al.35 and 
Platzer46), used by the cyber-physical 
systems community. Another ap-
proach is to integrate temporal logic 
specifications directly in reinforce-
ment learning algorithms.24 Even more 
challenging is that these verification 
techniques need to operate over ma-
chine-generated code, in particular 
code that itself might not be produced 
deterministically.a

The role of data. Perhaps the more 
significant key difference between 
traditional formal verification and 
verification for AI systems is the role 
of data—data used in training, testing, 
and deploying ML models. Today’s ML 
models are built and used with respect 
to a set, D, of data. For verifying an ML 
model, we propose to make explicit the 
assumptions about this data, and for-
mulate the verification problem as:

  D, M  P
Data is divided into available data 

and unseen data, where available data 
is data-at-hand, used for training and 
testing M; and unseen data is data over 
which M needs (or is expected) to oper-
ate without having seen it before. The 
whole idea behind building M is so 
that based on the data on which it was 
trained and tested, M would be able to 
make predictions on data it has never 
seen before, typically to some degree 
of accuracy.

Making the role of data explicit 
raises novel specification and verifica-
tion challenges, roughly broken into 
these categories, with related research 
questions:

Collection and partitioning of avail-
able data:

 ˲ How much data suffices to build 

a The ways in which machine learning mod-
els, some with millions of parameters, are 
constructed today, perhaps through weeks of 
training on clusters of CPUs, TPUs, and GPUs, 
raise a meta-issue of trust: scientific reproduc-
ibility.

Formal verification 
is a way to 
provide provable 
guarantees and 
thus increase 
one’s trust that the 
system will behave 
as desired. 



68    COMMUNICATIONS OF THE ACM   |   OCTOBER 2021  |   VOL.  64  |   NO.  10

review articles

reasoning at hand, one approach is 
to use a different validation approach 
for checking the specification of D; 
such approaches could borrow from a 
repertoire of statistical tools. Another 
approach would be to assume an ini-
tial specification is small or simple 
enough that it can be checked by (say, 
manual) inspection; then we use this 
specification to bootstrap an iterative 
refinement process. (We draw inspira-
tion from the counterexample guided 
abstraction and refinement method14 
of formal methods.) This refinement 
process may necessitate modifying D, 
M, and/or P.

 ˲ How does the specification of un-
seen data relate to the specification 
of the data on which M was trained 
and tested?

In traditional verification, we aim to 
prove property, P, a universally quan-
tified statement: for example, for all 
input values of integer variable x, the 
program will return a positive integer; 
or for all execution sequences x, the 
system will not deadlock.

So, the first question for proving P 
of an ML model, M, is: in P, what do we 
quantify over? For an ML model that is 
to be deployed in the real world, one rea-
sonable answer is to quantify over data 
distributions. But a ML model is meant 
to work only for certain distributions 
that are formed by real world phenom-
ena, and not for arbitrary distributions. 
We do not want to prove a property for 
all data distributions. This insight on 
the difference in what we quantify over 
and what the data represents for prov-
ing a trust property for M leads to this 
novel specification question:

 ˲ How can we specify the class of dis-
tributions over which P should hold for 
a given M? Consider robustness and 
fairness as two examples:

 ˴ For robustness, in the adversarial 
machine learning setting, we might 
want to show that M is robust to all 
norm-bounded perturbations D. More 
interestingly, we might want to show 
M is robust to all “semantic” or “struc-
tural” perturbations for the task at 
hand. For example, for some vision 
tasks, we want to consider rotating or 
darkening an image, not just changing 
any old pixel.

 ˴ For fairness, we might want to 
show the ML model is fair on a given 
dataset and all unseen datasets that are 

a model M for a given property P? The 
success of deep learning has taught us 
that with respect to accuracy, the more 
data, the better the model, but what 
about other properties? Does adding 
more data to train or test M make it 
more robust, fairer, and so on, or does 
it not have an effect with respect to 
the property P? What new kind of data 
needs to be collected if a desired prop-
erty does not hold?

 ˲ How do we partition an available 
(given) dataset into a training set and a 
test set? What guarantees can we make 
of this partition with respect to a de-
sired property P, in building a model 
M? Would we split the data differently 
if we were training the model with re-
spect to multiple properties at the 
same time? Would we split the data dif-
ferently if we were willing to trade one 
property over another?

Specifying unseen data: Including 
D in the formal methods framework 
D, M  P gives us the opportunity to 
state explicitly assumptions about the 
unseen data.

 ˲ How do we specify the data and/
or characterize properties of the data? 
For example, we could specify D as a 
stochastic process that generates in-
puts over which the ML model needs to 
be verified. Or, we could specify D as a 
data distribution. For a common statis-
tical model, for example, a normal dis-
tribution, we could specify D in terms 
of its parameters, for example, mean 
and variance. Probabilistic program-
ming languages, for example, Stan,8 
might be a starting point for specifying 
statistical models. But what of large 
real-world datasets that do not fit com-
mon statistical models, or which have 
thousands of parameters?

 ˲ In specifying unseen data, by defi-
nition, we will need to make certain 
assumptions about the unseen data. 
Would these assumptions not then be 
the same as those we would make to 
build the model M in the first place? 
More to the point: How can we trust 
the specification of D? This seemingly 
logical deadlock is analogous to the 
problem in traditional verification, 
where given an M, we need to assume 
the specifications of the elements E 
and P are “correct” in the verification 
task E, M  P. Then in the verification 
process, we may need to modify E and/
or P (or even M). To break the circular 

The formal methods 
community 
has recently 
been exploring 
robustness 
properties of 
AI systems, in 
particular, image 
processing systems 
used in autonomous 
vehicles. 
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“similar” (for some formal notion of 
“similar”). Training a recruiting tool to 
decide whom to interview on one pop-
ulation of applicants should ideally be 
fair on any future population. How can 
we specify these related distributions?

Toward building a fair classifier that 
is also robust, Mandal et al. show how 
to adapt an online learning algorithm 
that finds a classifier that is fair over a 
class of input distributions.37

Verification task: Once we have a 
specification of D and P, given an M, we 
are then left with verifying that M satis-
fies P, given any assumptions we have 
made explicit about available and un-
seen data in D, using whatever logical 
framework () we have at hand.

 ˲ How do we check the available data 
for desired properties? For example, if 
we want to detect whether a dataset is 
fair or not, what should we be checking 
about the dataset?

 ˲ If we detect the property does not 
hold, how do we fix the model, amend 
the property, or decide what new data 
to collect for retraining the model? In 
traditional verification, producing a 
counterexample, for example, an ex-
ecution path that does not satisfy P, 
helps engineers debug their systems 
and/or designs. What is the equivalent 
of a “counterexample” in the verifica-
tion of an ML model and how do we 
use it?

 ˲ How do we exploit the explicit 
specification of unseen data to aid in 
the verification task? Just as making 
explicit the specification of the envi-
ronment, E, in the verification task E, 
M  P, how can we leverage having an 
explicit specification of D?

 ˲ How can we extend standard verifi-
cation techniques to operate over data 
distributions, perhaps taking advan-
tage of the ways in which we formally 
specify unseen data?

These two key differences—the in-
herent probabilistic nature of M and the 
role of data D—provide research oppor-
tunities for the formal methods com-
munity to advance specification and 
verification techniques for AI systems.

Related work. The formal methods 
community has recently been explor-
ing robustness properties of AI sys-
tems,18 in particular, image processing 
systems used in autonomous vehicles. 
The state-of-the-art VerifAI system19 
explores the verification of robustness 

of autonomous vehicles, relying on 
simulation to identify execution traces 
where a cyber-physical system (for ex-
ample, a self-driving car) whose con-
trol relies on an embedded ML model 
could go awry. Tools such as ReluVal56 
and Neurify57 look at robustness of 
DNNs, especially as applied to safety 
of autonomous vehicles, including 
self-driving cars and aircraft collision 
avoidance systems. These tools rely on 
interval analysis as a way to cut down 
on state exploration, while still provid-
ing strong guarantees. A case study us-
ing Verisig to verify the safety of a DNN-
based controller for the F1/10 racing 
car platform provides a benchmark for 
comparing different DNN configura-
tions and sizes of input data and iden-
tifies a current gap between simulation 
and verification.32

FairSquare2 uses probabilistic verifi-
cation to verify fairness of ML models. 
LightDP60 transforms a probabilistic 
program into a non-probabilistic one, 
and then does type inference to auto-
mate verification of privacy budgets for 
differential privacy.

These pieces of work are in the spirit 
of trustworthy AI, but each focuses on 
only one trust property. Scaling their un-
derlying verification techniques to in-
dustry-scale systems is still a challenge.

Additional formal methods oppor-
tunities. Today’s AI systems are devel-
oped to perform a particular task in 
mind, for example, face recognition or 
playing Go. How do we take into con-
sideration the task that the deployed 
ML model is to perform in the specifi-
cation and verification problem? For 
example, consider showing the robust-
ness of a ML model, M, that does im-
age analysis: For the task of identifying 
cars on the road, we would want M to 
be robust to the image of any car that 
has a dent in its side; but for the task of 
quality control in an automobile man-
ufacturing line, we would not.

Previously, we focused on the veri-
fication task in formal methods. But 
the machinery of formal methods has 
also successfully been used recently for 
program synthesis.28 Rather than post-
facto verification of a model M, can we 
develop a “correct-by-construction” ap-
proach in building M in the first place? 
For example, could we add the desired 
trustworthy property, P, as a constraint 
as we train and test M, with the inten-

tion of guaranteeing that P holds (per-
haps for a given dataset or for a class of 
distributions) at deployment time? A 
variant of this approach is to guide the 
ML algorithm design process by check-
ing at each step that the algorithm nev-
er satisfies an undesirable behavior.53 
Similarly, safe reinforcement learning 
addresses learning policies in decision 
processes where safety is added as a 
factor in optimization or an external 
constraint in exploration.25

The laundry list of properties enu-
merated at the outset of this article for 
trustworthy AI is unwieldy, but each is 
critical toward building trust. A task 
ahead for the research community is to 
formulate commonalities across these 
properties, which can then be specified 
in a common logical framework, akin 
to using temporal logic38,47 for specify-
ing safety (“nothing bad happens”) and 
liveness (“something good eventually 
happens”) properties36 for reasoning 
about correctness properties of con-
current and distributed systems.

Compositional reasoning enables 
us to do verification on large and com-
plex systems. How does verifying a com-
ponent of an AI system for a property 
“lift” to showing that property holds for 
the system? Conversely, how does one 
decompose an AI system into pieces, 
verify each with respect to a given prop-
erty, and assert the property holds of 
the whole? Which properties are global 
(elude compositionality) and which are 
local? Decades of research in formal 
methods for compositional specifica-
tion and verification give us a vocabulary 
and framework as a good starting point.

Statistics has a rich history in model 
checkingb and model evaluation, using 
tools such as sensitivity analysis, pre-
diction scoring, predictive checking, 
residual analysis, and model criticism. 
With the goal of validating an ML model 
satisfies a desired property, these sta-
tistical approaches can complement 
formal verification approaches, just as 
testing and simulation complement 
verification of computational systems. 
Even more relevantly, as mentioned in 
“The role of data” noted earlier, they 
can help with the evaluation of any sta-

b Not to be confused with formal method’s notion 
of model checking, where a finite state machine 
(computational model of a system) is checked 
against a given property specification.13,50
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ecutive order on trustworthy AI to pro-
vide guidance to U.S. federal agencies 
in adopting AI for their services and to 
foster public trust in AI.58

Just as for trustworthy computing, 
government, academia, and industry 
are coming together to drive a new re-
search agenda in trustworthy AI. We 
are upping the ante on a holy grail!
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I would like to acknowledge my prede-
cessor and successor CISE ADs, and all 
the NSF and NITRD program manag-
ers who cultivated the community in 
trustworthy computing. It is especially 
gratifying to see how the Trustworthy 
Computing program has grown to the 
Secure and Trustworthy Cyberspace 
program, which continues to this day.

ACM sponsors the annual FAT* 
conference, which originally promot-
ed fairness, accountability, and trans-
parency in machine learning. The Mi-
crosoft Research FATE group added 
“E” for ethics. FAT* has since grown 
to recognize other properties, includ-
ing ethics, as well as the desirability of 
these properties for AI systems more 
generally, not just machine learning. 
My list of trustworthy AI properties is 
inspired by this community.

I would like to acknowledge S. Agraw-
al, R. Geambasu, D. Hsu, and S. Jana for 

tistical model used to specify unseen 
data, D, in the D, M  P problem. An op-
portunity for the formal methods com-
munity is to combine these statistical 
techniques with traditional verifica-
tion techniques (for early work on such 
a combination, see Younes et al.59).

Building a Trustworthy 
AI Community
Just as for trustworthy computing, for-
mal methods is only one approach to-
ward ensuring increased trust in AI sys-
tems. The community needs to explore 
many approaches, especially in combi-
nation, to achieve trustworthy AI. Other 
approaches include testing, simulation, 
run-time monitoring, threat modeling, 
vulnerability analysis, and the equiva-
lent of design and code reviews for code 
and data. Moreover, besides technical 
challenges, there are societal, policy, le-
gal, and ethical challenges.

On October 30–November 1, 2019, 
Columbia University’s Data Science 
Institute hosted an inaugural Sympo-
sium on Trustworthy AI1 sponsored by 
Capital One, a DSI industry affiliate. 
It brought together researchers from 
formal methods, security and privacy, 
fairness, and machine learning. Speak-
ers from industry brought a reality 
check to the kinds of questions and ap-
proaches the academic community are 
pursuing. The participants identified 
research challenge areas, including:

 ˲ Specification and verification tech-
niques;

 ˲ “Correctness-by-construction” 
techniques;

 ˲ New threat models and system-level 
adversarial attacks;

 ˲ Processes for auditing AI systems 
that consider properties such as explain-
ability, transparency, and responsibility;

 ˲ Ways to detect bias and de-bias 
data, machine learning algorithms, 
and their outputs;

 ˲ Systems infrastructure for experi-
menting for trustworthiness properties;

 ˲ Understanding the human ele-
ment, for example, where the machine 
is influencing human behavior; and

 ˲ Understanding the societal ele-
ment, including social welfare, social 
norms, morality, ethics, and law.

Technology companies, many of 
which push the frontiers of machine 
learning and AI, have not been sit-
ting still. They realize the importance 

of trustworthy AI for their custom-
ers, their business, and social good. 
Of predominant concern is fairness. 
IBM’s AI Fairness 360 provides an 
open source toolkit to check for un-
wanted bias in datasets and machine 
learning models.55 Google’s Tensor-
Flow kit provides “fairness indicators” 
for evaluating binary and multi-class 
classifiers for fairness.31 Microsoft’s 
Fairlearn is an open source package 
for machine learning developers to 
assess their systems’ fairness and to 
mitigate observed unfairness.39 At 
its F8 conference in 2018, Facebook 
announced its Fairness Flow tool in-
tended “to measure for potential bias-
es for or against particular groups of 
people.”52 In the spirit of industry and 
government collaborations, Amazon 
and the National Science Foundation 
have partnered since 2019 to fund a 
“Fairness in AI” program.43

In 2016, DARPA focused on explain-
ability by launching the Explainable AI 
(XAI) Program.16 The goal of this pro-
gram was to develop new machine learn-
ing systems that could “explain their 
rationale, characterize their strengths 
and weaknesses, and convey an under-
standing of how they will behave in the 
future.” With explainability would come 
increased trust by an end user to believe 
and adopt the outcome of the system.

Through the Secure and Trustwor-
thy Cyberspace Program, NSF funds 
a Center on Trustworthy Machine 
Learning9 led by Penn State University 
and involving researchers from Stan-
ford, UC Berkeley, UC San Diego, Uni-
versity of Virginia, and University of 
Wisconsin. Their primary focus is on 
addressing adversarial machine learn-
ing, complementary to the formal 
methods approach outlined previous-
ly. (In the interests of full disclosure, 
the author is on this Center’s Advisory 
Board.) In October 2019, the National 
Science Foundation announced a new 
program to fund National AI Insti-
tutes.42 One of the six themes it named 
was “Trustworthy AI,” emphasizing 
properties such as reliability, explain-
ability, privacy, and fairness.

The NITRD report on AI and cyber-
security calls explicitly for research in 
the specification and verification of 
AI systems and for trustworthy AI de-
cision-making.45 Finally, in December 
2020, the White House signed an ex-
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their insights into what makes verify-
ing AI systems different from verify-
ing traditional computing systems. 
Thanks to A. Chaintreau for instigating 
my journey on trustworthy AI. Special 
thanks to R. Geambasu and T. Zheng 
who provided comments on an earlier 
draft of this article. Thanks also to the 
anonymous reviewers for their point-
ers to relevant related work.

Final thanks to Capital One, JP Mor-
gan, the National Science Foundation, 
and the Sloan Foundation for their 
support and encouragement to pro-
mote trustworthy AI. 
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