
64 COMMUNICATIONS OF THE ACM | OCTOBER 2021 | VOL. 64 | NO. 10

review articles
DOI:10.1145/3448248

The pursuit of responsible AI raises the ante
on both the trustworthy computing and formal
methods communities.

BY JEANNETTE M. WING

F O R C E R TA I N TA S K S , AI systems have achieved good
enough performance to be deployed in our streets
and our homes. Object recognition helps modern
cars see. Speech recognition helps personalized
voice assistants, such as Siri and Alexa, converse.
For other tasks, AI systems have even exceeded
human performance. AlphaGo was the first computer
program to beat the best Go player in the world.

The promise of AI is huge. They will drive our
cars. They will help doctors diagnose disease more
accurately.54 They will help judges make more
consistent court decisions. They will help employers
hire more suitable job candidates.

However, we know these AI systems can be brittle
and unfair. Adding graffiti to a stop sign fools the
classifier into saying it is not a stop sign.22 Adding noise
to an image of a benign skin lesion fools the classifier
into saying it is malignant.23 Risk assessment tools
used in U.S. courts have shown to be biased against
blacks.4 Corporate recruiting tools have been shown to
be biased against women.17

How then can we deliver on the promise of the
benefits of AI but address these scenarios that have

life-critical consequences for people
and society? In short, how can we
achieve trustworthy AI?

The ultimate purpose of this article
is to rally the computing community
to support a broad-based, long-term
research program on trustworthy AI,
drawing on the expertise and sensibili-
ties from multiple research communi-
ties and stakeholders. This article fo-
cuses on addressing three key research
communities because: trustworthy
AI adds new desired properties above
and beyond those for trustworthy com-
puting; AI systems require new formal
methods techniques, and in particu-
lar, the role of data raises brand new
research questions; and AI systems
can likely benefit from the scrutiny of
formal methods for ensuring trustwor-
thiness. By bringing together research-
ers in trustworthy computing, formal
methods, and AI, we aim to foster a
new research community across aca-
demia, industry, and government in
trustworthy AI.

From Trustworthy Computing
to Trustworthy AI
The landmark Trust in Cyberspace 1999
National Academies report lay the
foundations of trustworthy computing
and what continues to be an active re-
search area.41

Around the same time, the National
Science Foundation started a series
of programs on trust. Starting with

Trustworthy
AI

 key insights
 ˽ The set of trustworthiness properties

for AI systems, in contrast to traditional
computing systems, needs to be extended
beyond reliability, security, privacy, and
usability to include properties such as
probabilistic accuracy under uncertainty,
fairness, robustness, accountability, and
explainability.

 ˽ To help ensure their trustworthiness, AI
systems can benefit from the scrutiny of
formal methods.

 ˽ AI systems raise the bar on formal
methods for two key reasons: the
inherent probabilistic nature of machine-
learned models, and the critical role of
data in training, testing, and deploying a
machine-learned model.

http://dx.doi.org/10.1145/3448248
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3448248&domain=pdf&date_stamp=2021-09-22

OCTOBER 2021 | VOL. 64 | NO. 10 | COMMUNICATIONS OF THE ACM 65

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K

 ˲ Privacy: Does the system protect a
person’s identity and data?

 ˲ Availability: Is the system up when
I need to access it?

 ˲ Usability: Can a human use it easily?
The computing systems for which

we want such properties to hold are
hardware and software systems, in-
cluding their interaction with humans
and the physical world. Academia and
industry have made huge strides in
trustworthy computing in the past
decades. However, as technology ad-
vances and as adversaries get more
sophisticated, trustworthy computing
remains a holy grail.

AI systems raise the bar in terms
of the set of properties of interest. In
addition to the properties associated
with trustworthy computing (as noted),

Trusted Computing (initiated in 2001),
then Cyber Trust (2004), then Trust-
worthy Computing (2007), and now
Secure and Trustworthy Cyberspace
(2011), the Computer and Information
Science and Engineering Directorate
has grown the academic research com-
munity in trustworthy computing. Al-
though it started within the computer
science community, support for re-
search in trustworthy computing now
spans multiple directorates at NSF and
engages many other funding organi-
zations, including, through the Net-
working and Information Technology
Research and Development (NITRD)
Program, 20 federal agencies.

Industry has also been a leader and
active participant in trustworthy com-
puting. With Bill Gates’s January 2002

“Trustworthy Computing” memo,26
Microsoft signaled to its employees,
customers, shareholders, and the rest
of the information technology sector
the importance of trustworthy software
and hardware products. It referred
to an internal Microsoft white paper,
which identified four pillars to trust-
worthiness: security, privacy, reliabil-
ity, and business integrity.

After two decades of investment
and advances in research and develop-
ment, trustworthy has come to mean a
set of (overlapping) properties:

 ˲ Reliability: Does the system do the
right thing?

 ˲ Safety: Does the system do no
harm?

 ˲ Security: How vulnerable is the sys-
tem to attack?

66 COMMUNICATIONS OF THE ACM | OCTOBER 2021 | VOL. 64 | NO. 10

review articles

might be a concurrent program that
uses locks for synchronization and P
might be “deadlock free.” A proof that
M is deadlock free means any user of
M is assured that M will never reach a
deadlocked state. To prove that M sat-
isfies P, we use formal mathematical
logics, which are the basis of today’s
scalable and practical verification
tools such as model checkers, theo-
rem provers, and satisfiability modulo
theories (SMT) solvers.

Especially when M is a concurrent,
distributed, or reactive system, in tra-
ditional formal methods, we often add
explicitly a specification of a system’s
environment E in the formulation of
the verification task:

 E, M  P
For example, if M is a parallel pro-

cess, E might be another process with
which M interacts (and then we might
write E ⏐⏐ M  P, where ⏐⏐ stands for par-
allel composition). Or, if M is device
driver code, E might be a model of the
operating system. Or, if M is a control
system, E might be a model of its envi-
ronment that closes the control loop.
The specification of E is written to
make explicit the assumptions about
the environment in which the system
is to be verified.

For verifying AI systems, M could
be interpreted to be a complex sys-
tem, for example, a self-driving car,
within which is a component that is a
machine-learned model, for example,
a computer vision system. Here, we
would want to prove P, for example,
safety or robustness, with respect to
M (the car) in the context of E (traffic,
roads, pedestrians, buildings, and so
on). We can view proving P as prov-
ing a “system-level” property. Seshia
et al. elaborate on the formal specifi-
cation challenges with this perspec-
tive,51 where a deep neural network
might be a black-box component of
the system M.

But what can we assert about the
machine learned model, for example,
a DNN, that is a critical component
of the system? Is there a robustness
or fairness property we can verify of
the machine-learned model itself?
Are there white-box verification tech-
niques that can take advantage of
the structure of the machine learned
model? Answering these questions
raises new verification challenges.

we also want (overlapping) properties
such as:

 ˲ Accuracy: How well does the AI
system do on new (unseen) data com-
pared to data on which it was trained
and tested?

 ˲ Robustness: How sensitive is the
system’s outcome to a change in the
input?

 ˲ Fairness: Are the system outcomes
unbiased?

 ˲ Accountability: Who or what is re-
sponsible for the system’s outcome?

 ˲ Transparency: Is it clear to an ex-
ternal observer how the system’s out-
come was produced?

 ˲ Interpretability/Explainability:
Can the system’s outcome be justified
with an explanation that a human can
understand and/or that is meaningful
to the end user?

 ˲ Ethical: Was the data collected in
an ethical manner? Will the system’s
outcome be used in an ethical manner?

 ˲ …and others, yet to be identified
The machine learning community

considers accuracy as a gold standard,
but trustworthy AI requires us to ex-
plore trade-offs among these prop-
erties. For example, perhaps we are
willing to give up on some accuracy in
order to deploy a fairer model. Also,
some of the above properties may have
different interpretations, leading to
different formalizations. For example,
there are many reasonable notions
of fairness,40 including demographic
parity, equal odds, and individual fair-
ness,20 some of which are incompatible
with each other.12,33

Traditional software and hardware
systems are complex due to their size
and the number of interactions among
their components. For the most part,
we can define their behavior in terms
of discrete logic and as deterministic
state machines.

Today’s AI systems, especially those
using deep neural networks, add a di-
mension of complexity to traditional
computing systems. This complexity
is due to their inherent probabilistic
nature. Through probabilities, AI sys-
tems model the uncertainty of human
behavior and the uncertainty of the
physical world. More recent advances
in machine learning, which rely on big
data, add to their probabilistic nature,
as data from the real world are just
points in a probability space. Thus,

trustworthy AI necessarily directs our
attention from the primarily determin-
istic nature of traditional computing
systems to the probabilistic nature of
AI systems.

Verify, to Trust
How can we design, implement, and
deploy AI systems to be trustworthy?

One approach for building end-
user trust in computing systems is
formal verification, where properties
are proven once and for all over a large
domain, for example, for all inputs to
a program or for all behaviors of a con-
current or distributed system. Alterna-
tively, the verification process identi-
fies a counterexample, for example, an
input value where the program produc-
es the wrong output or a behavior that
fails to satisfy the desired property,
and thus provides valuable feedback
on how to improve the system. Formal
verification has the advantage of obvi-
ating the need to test individual input
values or behaviors one-by-one, which
for large (or infinite) state spaces is im-
possible to achieve completely. Early
success stories in formal methods, for
example, in verifying cache coherence
protocols48 and in detecting device
driver bugs,5 led to their scalability and
practicality today. These approaches
are now used in the hardware and
software industry, for example, Intel,29
IBM,6 Microsoft,5 and Amazon.15,44
Due to advances in formal methods
languages, algorithms, and tools, and
to the increased scale and complex-
ity of hardware and software, we have
seen in the past few years a new surge
of interest and excitement in formal
verification, especially for ensuring the
correctness of critical components of
system infrastructure.7,10,11,15,27,30,34,49

Formal verification is a way to pro-
vide provable guarantees and thus in-
crease one’s trust that the system will
behave as desired.

From traditional formal methods to
formal methods for AI. In traditional
formal methods, we want to show that
a model M satisfies () a property P.

 M  P
M is the object to be verified—be

it a program or an abstract model of a
complex system, for example, a concur-
rent, distributed, or reactive system. P
is the correctness property, expressed
in some discrete logic. For example, M

OCTOBER 2021 | VOL. 64 | NO. 10 | COMMUNICATIONS OF THE ACM 67

review articles

Verifying a machine-learned model M.
For verifying an ML model, we reinter-
pret M and P: M stands for a machine-
learned model. P stands for a trust-
worthy property, for example, safety,
robustness, privacy, or fairness.

Verifying AI systems ups the ante
over traditional formal methods. There
are two key differences: the inherent
probabilistic nature of the machine-
learned model and the role of data.

The inherent probabilistic nature of M
and P, and thus the need for probabilistic
reasoning (). The ML model, M, itself
is semantically and structurally differ-
ent from a typical computer program.
As mentioned, it is inherently proba-
bilistic, taking inputs from the real
world, that are perhaps mathemati-
cally modeled as a stochastic process,
and producing outputs that are associ-
ated with probabilities. Internally, the
model itself operates over probabili-
ties; for example, labels on edges in a
deep neural network are probabilities
and nodes compute functions over
these probabilities. Structurally, be-
cause a machine generated the ML
model, M itself is not necessarily some-
thing human readable or comprehen-
sible; crudely, a DNN is a complex
structure of if-then-else statements
that would unlikely ever be written by
a human. This “intermediate code”
representation opens up new lines of
research in program analysis.

The properties P themselves may be
formulated over continuous, not (just)
discrete domains, and/or using expres-
sions from probability and statistics.
Robustness properties for deep neural
networks are characterized as predi-
cates over continuous variables.18 Fair-
ness properties are characterized in
terms of expectations with respect to
a loss function over reals (for example,
see Dwork et al.20). Differential privacy
is defined in terms of a difference in
probabilities with respect to a (small)
real value.21 Note that just as with prop-
erties such as usability for trustworthy
computing, some desired properties
of trustworthy AI systems, for example,
transparency or ethics, have yet to be
formalized or may not be formalizable.
For such properties, a framework that
considers legal, policy, behavioral and
social rules and norms could provide
the context within which a formaliz-
able question can be answered. In

short, verification of AI systems will be
limited to what can be formalized.

These inherently probabilistic
models M and associated desired trust
properties P call for scalable and/or
new verification techniques that work
over reals, non-linear functions, prob-
ability distributions, stochastic pro-
cesses, and so on. One stepping-stone
to verifying AI systems is probabilistic
logics and hybrid logics (for example,
Alur et al.,3 Kwiatkowska et al.35 and
Platzer46), used by the cyber-physical
systems community. Another ap-
proach is to integrate temporal logic
specifications directly in reinforce-
ment learning algorithms.24 Even more
challenging is that these verification
techniques need to operate over ma-
chine-generated code, in particular
code that itself might not be produced
deterministically.a

The role of data. Perhaps the more
significant key difference between
traditional formal verification and
verification for AI systems is the role
of data—data used in training, testing,
and deploying ML models. Today’s ML
models are built and used with respect
to a set, D, of data. For verifying an ML
model, we propose to make explicit the
assumptions about this data, and for-
mulate the verification problem as:

 D, M  P
Data is divided into available data

and unseen data, where available data
is data-at-hand, used for training and
testing M; and unseen data is data over
which M needs (or is expected) to oper-
ate without having seen it before. The
whole idea behind building M is so
that based on the data on which it was
trained and tested, M would be able to
make predictions on data it has never
seen before, typically to some degree
of accuracy.

Making the role of data explicit
raises novel specification and verifica-
tion challenges, roughly broken into
these categories, with related research
questions:

Collection and partitioning of avail-
able data:

 ˲ How much data suffices to build

a The ways in which machine learning mod-
els, some with millions of parameters, are
constructed today, perhaps through weeks of
training on clusters of CPUs, TPUs, and GPUs,
raise a meta-issue of trust: scientific reproduc-
ibility.

Formal verification
is a way to
provide provable
guarantees and
thus increase
one’s trust that the
system will behave
as desired.

68 COMMUNICATIONS OF THE ACM | OCTOBER 2021 | VOL. 64 | NO. 10

review articles

reasoning at hand, one approach is
to use a different validation approach
for checking the specification of D;
such approaches could borrow from a
repertoire of statistical tools. Another
approach would be to assume an ini-
tial specification is small or simple
enough that it can be checked by (say,
manual) inspection; then we use this
specification to bootstrap an iterative
refinement process. (We draw inspira-
tion from the counterexample guided
abstraction and refinement method14
of formal methods.) This refinement
process may necessitate modifying D,
M, and/or P.

 ˲ How does the specification of un-
seen data relate to the specification
of the data on which M was trained
and tested?

In traditional verification, we aim to
prove property, P, a universally quan-
tified statement: for example, for all
input values of integer variable x, the
program will return a positive integer;
or for all execution sequences x, the
system will not deadlock.

So, the first question for proving P
of an ML model, M, is: in P, what do we
quantify over? For an ML model that is
to be deployed in the real world, one rea-
sonable answer is to quantify over data
distributions. But a ML model is meant
to work only for certain distributions
that are formed by real world phenom-
ena, and not for arbitrary distributions.
We do not want to prove a property for
all data distributions. This insight on
the difference in what we quantify over
and what the data represents for prov-
ing a trust property for M leads to this
novel specification question:

 ˲ How can we specify the class of dis-
tributions over which P should hold for
a given M? Consider robustness and
fairness as two examples:

 ˴ For robustness, in the adversarial
machine learning setting, we might
want to show that M is robust to all
norm-bounded perturbations D. More
interestingly, we might want to show
M is robust to all “semantic” or “struc-
tural” perturbations for the task at
hand. For example, for some vision
tasks, we want to consider rotating or
darkening an image, not just changing
any old pixel.

 ˴ For fairness, we might want to
show the ML model is fair on a given
dataset and all unseen datasets that are

a model M for a given property P? The
success of deep learning has taught us
that with respect to accuracy, the more
data, the better the model, but what
about other properties? Does adding
more data to train or test M make it
more robust, fairer, and so on, or does
it not have an effect with respect to
the property P? What new kind of data
needs to be collected if a desired prop-
erty does not hold?

 ˲ How do we partition an available
(given) dataset into a training set and a
test set? What guarantees can we make
of this partition with respect to a de-
sired property P, in building a model
M? Would we split the data differently
if we were training the model with re-
spect to multiple properties at the
same time? Would we split the data dif-
ferently if we were willing to trade one
property over another?

Specifying unseen data: Including
D in the formal methods framework
D, M  P gives us the opportunity to
state explicitly assumptions about the
unseen data.

 ˲ How do we specify the data and/
or characterize properties of the data?
For example, we could specify D as a
stochastic process that generates in-
puts over which the ML model needs to
be verified. Or, we could specify D as a
data distribution. For a common statis-
tical model, for example, a normal dis-
tribution, we could specify D in terms
of its parameters, for example, mean
and variance. Probabilistic program-
ming languages, for example, Stan,8
might be a starting point for specifying
statistical models. But what of large
real-world datasets that do not fit com-
mon statistical models, or which have
thousands of parameters?

 ˲ In specifying unseen data, by defi-
nition, we will need to make certain
assumptions about the unseen data.
Would these assumptions not then be
the same as those we would make to
build the model M in the first place?
More to the point: How can we trust
the specification of D? This seemingly
logical deadlock is analogous to the
problem in traditional verification,
where given an M, we need to assume
the specifications of the elements E
and P are “correct” in the verification
task E, M  P. Then in the verification
process, we may need to modify E and/
or P (or even M). To break the circular

The formal methods
community
has recently
been exploring
robustness
properties of
AI systems, in
particular, image
processing systems
used in autonomous
vehicles.

OCTOBER 2021 | VOL. 64 | NO. 10 | COMMUNICATIONS OF THE ACM 69

review articles

“similar” (for some formal notion of
“similar”). Training a recruiting tool to
decide whom to interview on one pop-
ulation of applicants should ideally be
fair on any future population. How can
we specify these related distributions?

Toward building a fair classifier that
is also robust, Mandal et al. show how
to adapt an online learning algorithm
that finds a classifier that is fair over a
class of input distributions.37

Verification task: Once we have a
specification of D and P, given an M, we
are then left with verifying that M satis-
fies P, given any assumptions we have
made explicit about available and un-
seen data in D, using whatever logical
framework () we have at hand.

 ˲ How do we check the available data
for desired properties? For example, if
we want to detect whether a dataset is
fair or not, what should we be checking
about the dataset?

 ˲ If we detect the property does not
hold, how do we fix the model, amend
the property, or decide what new data
to collect for retraining the model? In
traditional verification, producing a
counterexample, for example, an ex-
ecution path that does not satisfy P,
helps engineers debug their systems
and/or designs. What is the equivalent
of a “counterexample” in the verifica-
tion of an ML model and how do we
use it?

 ˲ How do we exploit the explicit
specification of unseen data to aid in
the verification task? Just as making
explicit the specification of the envi-
ronment, E, in the verification task E,
M  P, how can we leverage having an
explicit specification of D?

 ˲ How can we extend standard verifi-
cation techniques to operate over data
distributions, perhaps taking advan-
tage of the ways in which we formally
specify unseen data?

These two key differences—the in-
herent probabilistic nature of M and the
role of data D—provide research oppor-
tunities for the formal methods com-
munity to advance specification and
verification techniques for AI systems.

Related work. The formal methods
community has recently been explor-
ing robustness properties of AI sys-
tems,18 in particular, image processing
systems used in autonomous vehicles.
The state-of-the-art VerifAI system19
explores the verification of robustness

of autonomous vehicles, relying on
simulation to identify execution traces
where a cyber-physical system (for ex-
ample, a self-driving car) whose con-
trol relies on an embedded ML model
could go awry. Tools such as ReluVal56
and Neurify57 look at robustness of
DNNs, especially as applied to safety
of autonomous vehicles, including
self-driving cars and aircraft collision
avoidance systems. These tools rely on
interval analysis as a way to cut down
on state exploration, while still provid-
ing strong guarantees. A case study us-
ing Verisig to verify the safety of a DNN-
based controller for the F1/10 racing
car platform provides a benchmark for
comparing different DNN configura-
tions and sizes of input data and iden-
tifies a current gap between simulation
and verification.32

FairSquare2 uses probabilistic verifi-
cation to verify fairness of ML models.
LightDP60 transforms a probabilistic
program into a non-probabilistic one,
and then does type inference to auto-
mate verification of privacy budgets for
differential privacy.

These pieces of work are in the spirit
of trustworthy AI, but each focuses on
only one trust property. Scaling their un-
derlying verification techniques to in-
dustry-scale systems is still a challenge.

Additional formal methods oppor-
tunities. Today’s AI systems are devel-
oped to perform a particular task in
mind, for example, face recognition or
playing Go. How do we take into con-
sideration the task that the deployed
ML model is to perform in the specifi-
cation and verification problem? For
example, consider showing the robust-
ness of a ML model, M, that does im-
age analysis: For the task of identifying
cars on the road, we would want M to
be robust to the image of any car that
has a dent in its side; but for the task of
quality control in an automobile man-
ufacturing line, we would not.

Previously, we focused on the veri-
fication task in formal methods. But
the machinery of formal methods has
also successfully been used recently for
program synthesis.28 Rather than post-
facto verification of a model M, can we
develop a “correct-by-construction” ap-
proach in building M in the first place?
For example, could we add the desired
trustworthy property, P, as a constraint
as we train and test M, with the inten-

tion of guaranteeing that P holds (per-
haps for a given dataset or for a class of
distributions) at deployment time? A
variant of this approach is to guide the
ML algorithm design process by check-
ing at each step that the algorithm nev-
er satisfies an undesirable behavior.53
Similarly, safe reinforcement learning
addresses learning policies in decision
processes where safety is added as a
factor in optimization or an external
constraint in exploration.25

The laundry list of properties enu-
merated at the outset of this article for
trustworthy AI is unwieldy, but each is
critical toward building trust. A task
ahead for the research community is to
formulate commonalities across these
properties, which can then be specified
in a common logical framework, akin
to using temporal logic38,47 for specify-
ing safety (“nothing bad happens”) and
liveness (“something good eventually
happens”) properties36 for reasoning
about correctness properties of con-
current and distributed systems.

Compositional reasoning enables
us to do verification on large and com-
plex systems. How does verifying a com-
ponent of an AI system for a property
“lift” to showing that property holds for
the system? Conversely, how does one
decompose an AI system into pieces,
verify each with respect to a given prop-
erty, and assert the property holds of
the whole? Which properties are global
(elude compositionality) and which are
local? Decades of research in formal
methods for compositional specifica-
tion and verification give us a vocabulary
and framework as a good starting point.

Statistics has a rich history in model
checkingb and model evaluation, using
tools such as sensitivity analysis, pre-
diction scoring, predictive checking,
residual analysis, and model criticism.
With the goal of validating an ML model
satisfies a desired property, these sta-
tistical approaches can complement
formal verification approaches, just as
testing and simulation complement
verification of computational systems.
Even more relevantly, as mentioned in
“The role of data” noted earlier, they
can help with the evaluation of any sta-

b Not to be confused with formal method’s notion
of model checking, where a finite state machine
(computational model of a system) is checked
against a given property specification.13,50

70 COMMUNICATIONS OF THE ACM | OCTOBER 2021 | VOL. 64 | NO. 10

review articles

ecutive order on trustworthy AI to pro-
vide guidance to U.S. federal agencies
in adopting AI for their services and to
foster public trust in AI.58

Just as for trustworthy computing,
government, academia, and industry
are coming together to drive a new re-
search agenda in trustworthy AI. We
are upping the ante on a holy grail!

Acknowledgments
During 2002–2003, I was fortunate to
spend a sabbatical at Microsoft Re-
search and witnessed firsthand how
trustworthy computing permeated the
company. It was also the year when the
SLAM project5 showed how the use of
formal methods could systematically
detect bugs in device driver code, which
at the time was responsible for a signifi-
cant fraction of “blue screens of death.”
Whereas formal methods had already
been shown to be useful and scalable
for the hardware industry, the SLAM
work was the first industry-scale project
that showed the effectiveness of formal
methods for software systems. I also
had the privilege to serve on the Micro-
soft Trustworthy Computing Academic
Advisory Board from 2003–2007 and
2010–2012.

When I joined NSF in 2007 as the As-
sistant Director for the Computer and
Information Science and Engineering
Directorate, I promoted trustworthy
computing across the directorate and
with other federal agencies via NITRD.
I would like to acknowledge my prede-
cessor and successor CISE ADs, and all
the NSF and NITRD program manag-
ers who cultivated the community in
trustworthy computing. It is especially
gratifying to see how the Trustworthy
Computing program has grown to the
Secure and Trustworthy Cyberspace
program, which continues to this day.

ACM sponsors the annual FAT*
conference, which originally promot-
ed fairness, accountability, and trans-
parency in machine learning. The Mi-
crosoft Research FATE group added
“E” for ethics. FAT* has since grown
to recognize other properties, includ-
ing ethics, as well as the desirability of
these properties for AI systems more
generally, not just machine learning.
My list of trustworthy AI properties is
inspired by this community.

I would like to acknowledge S. Agraw-
al, R. Geambasu, D. Hsu, and S. Jana for

tistical model used to specify unseen
data, D, in the D, M  P problem. An op-
portunity for the formal methods com-
munity is to combine these statistical
techniques with traditional verifica-
tion techniques (for early work on such
a combination, see Younes et al.59).

Building a Trustworthy
AI Community
Just as for trustworthy computing, for-
mal methods is only one approach to-
ward ensuring increased trust in AI sys-
tems. The community needs to explore
many approaches, especially in combi-
nation, to achieve trustworthy AI. Other
approaches include testing, simulation,
run-time monitoring, threat modeling,
vulnerability analysis, and the equiva-
lent of design and code reviews for code
and data. Moreover, besides technical
challenges, there are societal, policy, le-
gal, and ethical challenges.

On October 30–November 1, 2019,
Columbia University’s Data Science
Institute hosted an inaugural Sympo-
sium on Trustworthy AI1 sponsored by
Capital One, a DSI industry affiliate.
It brought together researchers from
formal methods, security and privacy,
fairness, and machine learning. Speak-
ers from industry brought a reality
check to the kinds of questions and ap-
proaches the academic community are
pursuing. The participants identified
research challenge areas, including:

 ˲ Specification and verification tech-
niques;

 ˲ “Correctness-by-construction”
techniques;

 ˲ New threat models and system-level
adversarial attacks;

 ˲ Processes for auditing AI systems
that consider properties such as explain-
ability, transparency, and responsibility;

 ˲ Ways to detect bias and de-bias
data, machine learning algorithms,
and their outputs;

 ˲ Systems infrastructure for experi-
menting for trustworthiness properties;

 ˲ Understanding the human ele-
ment, for example, where the machine
is influencing human behavior; and

 ˲ Understanding the societal ele-
ment, including social welfare, social
norms, morality, ethics, and law.

Technology companies, many of
which push the frontiers of machine
learning and AI, have not been sit-
ting still. They realize the importance

of trustworthy AI for their custom-
ers, their business, and social good.
Of predominant concern is fairness.
IBM’s AI Fairness 360 provides an
open source toolkit to check for un-
wanted bias in datasets and machine
learning models.55 Google’s Tensor-
Flow kit provides “fairness indicators”
for evaluating binary and multi-class
classifiers for fairness.31 Microsoft’s
Fairlearn is an open source package
for machine learning developers to
assess their systems’ fairness and to
mitigate observed unfairness.39 At
its F8 conference in 2018, Facebook
announced its Fairness Flow tool in-
tended “to measure for potential bias-
es for or against particular groups of
people.”52 In the spirit of industry and
government collaborations, Amazon
and the National Science Foundation
have partnered since 2019 to fund a
“Fairness in AI” program.43

In 2016, DARPA focused on explain-
ability by launching the Explainable AI
(XAI) Program.16 The goal of this pro-
gram was to develop new machine learn-
ing systems that could “explain their
rationale, characterize their strengths
and weaknesses, and convey an under-
standing of how they will behave in the
future.” With explainability would come
increased trust by an end user to believe
and adopt the outcome of the system.

Through the Secure and Trustwor-
thy Cyberspace Program, NSF funds
a Center on Trustworthy Machine
Learning9 led by Penn State University
and involving researchers from Stan-
ford, UC Berkeley, UC San Diego, Uni-
versity of Virginia, and University of
Wisconsin. Their primary focus is on
addressing adversarial machine learn-
ing, complementary to the formal
methods approach outlined previous-
ly. (In the interests of full disclosure,
the author is on this Center’s Advisory
Board.) In October 2019, the National
Science Foundation announced a new
program to fund National AI Insti-
tutes.42 One of the six themes it named
was “Trustworthy AI,” emphasizing
properties such as reliability, explain-
ability, privacy, and fairness.

The NITRD report on AI and cyber-
security calls explicitly for research in
the specification and verification of
AI systems and for trustworthy AI de-
cision-making.45 Finally, in December
2020, the White House signed an ex-

OCTOBER 2021 | VOL. 64 | NO. 10 | COMMUNICATIONS OF THE ACM 71

review articles

their insights into what makes verify-
ing AI systems different from verify-
ing traditional computing systems.
Thanks to A. Chaintreau for instigating
my journey on trustworthy AI. Special
thanks to R. Geambasu and T. Zheng
who provided comments on an earlier
draft of this article. Thanks also to the
anonymous reviewers for their point-
ers to relevant related work.

Final thanks to Capital One, JP Mor-
gan, the National Science Foundation,
and the Sloan Foundation for their
support and encouragement to pro-
mote trustworthy AI.

References
1. Agrawal, S. and Wing, J.M. Trustworthy AI

Symposium. Columbia University, (Oct. 30–Nov. 1,
2019); https://datascience.columbia.edu/trustworthy-
ai-symposium.

2. Albarghouthi, A., D’Antoni, L., Drews, S. and Nori,
A. FairSquare: Probabilistic verification of program
fairness. In Proceedings of ACM OOPSLA ‘17.

3. Alur, R., Henzinger, T.A. and Ho, P.H. Automatic
symbolic verification of embedded systems. IEEE
Trans. Software Eng. 22 (1996), 181–201.

4. Angwin, J., Larson, J., Mattu, S. and Kirchner, L.
Machine bias. ProPublica (May 23, 2016).

5. Ball, T., Cook, B., Levin, V. and Rajamani, S. SLAM and
Static driver verifier: Technology Transfer of formal
methods inside Microsoft. Technical Report MSR-
TR-2004-08. Microsoft Research, Jan. 2004.

6. Baumgartner, J. Integrating formal verification into
mainstream verification: The IBM experience. Formal
Methods in Computer-Aided Design, Haifa, Israel, 2006.

7. Bhargavan, K. et al. Everest: Towards a verified,
drop-in replacement of HTTPS. In Proceedings of the
2nd Summit on Advances in Programming Languages,
May 2017.

8. Carpenter, B et al. Stan: A probabilistic programming
language. J. Statistical Software 76, 1 (2017); DOI
10.18637/jss.v076.i01

9. Center for Trustworthy Machine Learning; https://
ctml.psu.edu

10. Chen, H., Chajed, T., Konradi, A., Wang, S., Ileri, A.,
Chlipala, A., Kaashoek, M.F. and N. Zeldovich, N.
Verifying a high-performance crash-safe file system
using a tree specification. In Proceedings of the 26th
ACM Symposium on Operating Systems Principles,
2017.

11. Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek,
M.F. and Zeldovich, N. Using crash Hoare logic for
certifying the FSCQ file system. In Proceedings of the
25th ACM Symp. Operating Systems Principles, 2015.

12. Chouldechova, A. Fair prediction with disparate
impact: A study of bias in recidivism prediction
instruments. In Proceedings of FATML, 2016.

13. Clarke, E.M. and Emerson, E.A. Characterizing
correctness properties of parallel programs using
fixpoints. Automata, Languages and Programming,
Lecture Notes in Computer Science 85 (1980), 169–181

14. Clarke, E., Grumberg, O., Jha, S., Lu, Y. and Veith,
H. Counterexample-guided abstraction refinement.
Computer Aided Verification. E.A. Emerson, A.P. Sistla,
eds. Lecture Notes in Computer Science 1855 (2000).
Springer, Berlin, Heidelberg.

15. Cook, B. Formal reasoning about the security of Amazon
Web Services,” Proceedings of the International
Conference on Computer Aided Verification, Volume
10981, 2018.

16. DARPA. Explainable AI (XAI) Program. Matt Turek,
Defense Advanced Research Projects Agency, 2016;
https://www.darpa.mil/program/explainable-artificial-
intelligence.

17. Dastin, J. Amazon scraps secret AI recruiting tool that
showed bias against women. Reuters, Oct. 9, 2018.

18. Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A.L. and
Seshia, S.A. A formalization of robustness for deep
neural networks. In Proceedings of the AAAI Spring
Symp. Workshop on Verification of Neural Networks,
Mar. 2019.

19. Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A.L.
and Seshia, S.A. VERIFAI: A toolkit for the formal
design and analysis of artificial intelligence-based
systems. In Proceedings of Intern. Conf. Computer-
Aided Design, 2019.

20. Dwork, C., Hardt, M., Pitassi, T., Reingold, O.
and Zemel. R. Fairness through awareness. In
Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, 2012; https://doi.
org/10.1145/2090236.2090255

21. Dwork, C., McSherry, F., Nissim, K. and Smith, A.
Calibrating noise to sensitivity in private data analysis.
In Proceedings of the 3rd Con. Theory of Cryptography.
S. Halevi and T. Rabin, Eds. Springer-Verlag, Berlin,
Heidelberg, 2006, 265–284; DOI:10.1007/11681878 14

22. Eykholt, K. et al. Robust physical-world attacks on
deep learning visual classification. In Proceedings of
CVPR 2017.

23. Finlayson, S.G., Bowers, J.D., Ito, J., Zittrain, J.L.,
Beam, A.L., Kohane, I.S. Adversarial attacks on
medical machine learning. Science 363, 6433 (2019),
1287–1289; DOI: 10.1126/science.aaw4399

24. Gao, Q., Hajinezhad, D., Zhang, Y., Kantaros, Y. and
Zavlanos, M.M. Reduced variance deep reinforcement
learning with temporal logic specifications. In
Proceedings of ACM/IEEE Intern. Conf. Cyber-
Physical Systems, 2019, 237–248.

25. Garcia, J. and Fernandez, F. A comprehensive survey
on safe reinforcement learning. J. Machine Learning
Research 16 (2015), 1437–1480.

26. Gates, B. Trustworthy computing. Microsoft memo
(Jan. 15, 2002); wired.com

27. Gu, R., Shao, Z., Chen, H., Wu, X.N., Kim, J., Sjberg, V.
and Costanzo, D. Certikos: An extensible architecture
for building certified concurrent OS kernels.
Proceedings of 12th USENIX Symp. Operating Systems
Design and Implementation, 2016.

28. Gulwani, S., Polozov, O. and Singh, R. Program
Synthesis. Foundations and Trends® in Programming
Languages. Now Publishers Inc., 2017.

29. Harrison, J. Formal verification at Intel. In
Proceedings of the 18th Annual IEEE Symp. Logic in
Computer Science. IEEE, 2003.

30. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A.,
Parno, B., Zhang, D. and Zill, B. Ironclad apps: End-to-
end security via automated full-system verification.
In Proceedings of the 11th USENIX Symp. Operating
Systems Design and Implementation, 2014.

31. Hutchinson, B., Mitchell, M., Xu, C., Doshi, T. Fairness
indicators: Thinking about fairness evaluation, 2020;
https://www.tensorflow.org/tfx/fairness_indicators/
guidance.

32. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J. and Lee,
I. Case study: Verifying the safety of an autonomous
racing car with a neural network controller. In
Proceedings of the 23rd ACM Intern. Conf. Hybrid
Systems: Computation and Control, 2020.

33. Kleinberg, J., Mullainathan, S. Raghavan, M. Inherent
trade-offs in the fair determination of risk scores. In
Proceedings of Innovations in Theoretical Computer
Science, 2017.

34. Koh, N., Li, Y., Li, Y., Xia, L., Beringer, L., Honore, W., Mansky,
W., Pierce, B.C. and Zdancewic, S. From C to interaction
trees: Specifying, verifying, and testing a networked
server. In Proceedings of the 8th ACM SIGPLAN Intern.
Conf. Certified Programs and Proofs, Jan. 2019.

35. Kwiatkowska, M., Norman, G. and Parker, D. PRISM:
Probabilistic Symbolic Model Checker. In Proceedings
of the PAPM/PROBMIV’01 Tools Session. Sept.
2001, 7–12. Available as Technical Report 760/2001,
University of Dortmund.

36. Lamport, L. Proving the correctness of multiprocess
programs. IEEE Trans. Software Engineering SE-3, 2
(Mar. 1977), 125–143; doi: 10.1109/TSE.1977.229904.

37. Mandal, D., Deng, S., Hsu, D., Jana, S. and Wing,
J.M. Ensuring fairness beyond the training data. In
Proceedings of the 34th Conf. Neural Information
Processing Systems, 2020.

38. Manna, Z. and Pneuli, A. Verification of concurrent
programs: Temporal proof Principles. Workshop on
Logic of Programs. Springer-Verlag, 1981, 200–252.

39. Microsoft Azure blog. Fairness in machine learning
models, 2020; https://docs.microsoft.com/en-us/
azure/machine-learning/concept-fairness-ml

40. Narayanan, A. 21 Definitions of fairness and their
politics. In Proceedings of FAT* 2018. Tutorial; https://
www.youtube.com/watch?v=jIXIuYdnyyk.

41. National Research Council. Trust in Cyberspace.
The National Academies Press, 1999; https://doi.
org/10.17226/6161

42. National Science Foundation. National AI Institutes

Call for Proposals, 2019; https://www.nsf.gov/
pubs/2020/nsf20503/nsf20503.htm.

43. National Science Foundation. NSF Program on
Fairness in Artificial Intelligence in Collaboration with
Amazon (FAI), 2020; https://www.nsf.gov/funding/
pgm_summ.jsp?pims_id=505651

44. Newcombe, C., Rath, T., Zhang, F., Munteanu, B.,
Brooker, M. and Deardeuff, M. How Amazon Web
Services uses formal methods. Commun. ACM 58, 4
(Apr. 2015), 66–73.

45. Networking and Information Technology Research
and Development Subcommittee, Machine Learning
and Artificial Intelligence Subcommittee, and the
Special Cyber Operations Research and Engineering
Subcommittee of the National Science and Technology
Council. Artificial Intelligence and Cybersecurity:
Opportunities and Challenges. Public Report; https://
www.nitrd.gov/pubs/AI-CS-Tech-Summary-2020.pdf.

46. Platzer, A. Logical Foundations of Cyber-Physical
Systems. Springer, Cham, 2018.

47. Pnueli, P. The temporal logic of programs. In
Proceedings of the Symp. Foundations of Computer
Science, 1977, 46–57.

48. Pong. F. and Dubois, M. Verification techniques for
cache coherence protocols. ACM Computing Surveys
29, 1 (Mar. 1997).

49. Protzenko, J. et al. Verified low-level programming
embedded in F*. In Proceedings of 22nd Intern. Conf.
Functional Programming, May 2017.

50. Queille, J.P. and Sifakis, J. Specification and verification
of concurrent systems in CESAR. In Proceedings of the
Intern. Symp. Programming, LNCS 137, 1982, 337–351.

51. Seshia, S.A. et al. Formal specification for deep
neural networks. In Proceedings of the Intern. Symp.
Automated Technology for Verification and Analysis,
LNCS 11138, Sept. 2018.

52. Shankland, S. Facebook starts building AI with an ethical
compass. CNET, 2018; https://www.cnet.com/news/
facebook-starts-building-ai-with-an-ethical-compass/.

53. Thomas, P.S., da Silva, B.C., Barto, A.G., Giguere, S.,
Brun, Y. and Brunskill, E. Preventing undesirable
behavior of intelligent machines. Science 366, 6468
(2019), 999–1004.

54. Tiwari, P. et al. Computer-extracted texture features to
distinguish cerebral radionecrosis from recurrent brain
tumors on multiparametric MRI: A feasibility study.
American J. Neuroradiology 37, 12 (2016), 2231–2236.

55. Varshney, K. Introducing AI Fairness 360. IBM, 2018;
https://www.ibm.com/blogs/research/2018/09/ai-
fairness-360/.

56. Wang, S., Pei, K., Whitehouse, J., Yang, J. and Jana,
S. Formal security analysis of neural networks using
symbolic intervals. In Proceedings of the 27th USENIX
Security Symp., 2018.

57. Wang, S., Pei, K., Whitehouse, J., Yang, J. and Jana, S.
Efficient formal safety analysis of neural networks.
In Proceedings of Neural Information Processing
Systems, 2018.

58. White House. Executive Order on Promoting the Use
of Trustworthy Artificial Intelligence in the Federal
Government, Dec. 3, 2020; https://www.whitehouse.gov/
presidential-actions/executive-order-promoting-use-
trustworthy-artificial-intelligence-federal-government/.

59. Younes, H.L.S. and Simmons, R.G. Probabilistic
verification of discrete event systems using
acceptance sampling. In Proceedings of the
14th Intern. Conf. Computer Aided Verification,
(Copenhagen, Denmark, July 2002), E. Brinksma and
K. Guldstrand Larsen, Eds. Lecture Notes in Computer
Science 2404, 223–235.

60. Zheng, D. and Kifer, D. Light DP: Towards automating
differential privacy proofs. In Proceedings of the 44th
ACM SIGPLAN Symp. Principles of Programming
Languages, 2017, 888–901.

Jeannette M. Wing (wing@columbia.edu) is Avanessians
Director of the Data Science Institute and Professor of
Computer Science at Columbia University, New York, NY,
USA.

© 2021 ACM 0001-0782/21/10

Watch the author discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
trustworthy-ai

