Algebraic Effects and Handlers

Ningning Xie

University of Toronto
OPLSS 2025

Acknowledgments

> Lectures on Algebraic Effects, Gordon Plotkin, NIl Shonan meeting No. 146, 2019

> Effect-Handler Oriented Programming, Sam Lindley, OPLSS'22

» My collaborators: Daan Leijen, Jonathan Brachthauser, Daniel Hillerstrom,
Philipp Schuster, Youyou Cong, Kazuki Ikemori, Daniel D. Johnson, Dougal
Maclaurin, Adam Paszke, Gordon Plotkin

Effects are everywhere

Input/output
» Read/Write

» Exceptions
Mutable states
» Concurrency

\

\

Backtracking

\

Effects are everywhere

Input/output
» Read/Write

» Exceptions
Mutable states
» Concurrency

\

\

Backtracking

\

Effects are often ad-hoc and hard-coded.

Algebraic effects and effect handlers

Composable and structured control-flow abstraction.

FoSSaCS'01

Adequacy for Algebraic Effects

Gordon Plotkin and John Power

Division of Informatics, University of Edinburgh, King’s Buildings,
Edinburgh EH9 3J7, Scotland

Abstract. Moggi proposed a monadic account of computational effect

He also presented the computational A-calculus, A, a core call-by

can give a corresponding treatment of operational semantics. We do
this in the case of algebraic effects where the operations are given by
a single-sorted algebraic signature, and their semantics is supported by
the monad, in a certain sense. We consider call-by-value PCF with

and without—recursion, an ension of A. with arithmetic. We prove
general adequacy theorems, and illustrate these with two examples: non-

and nondeterminism.

ESOP'09

Handlers of Algebraic Effects

Gordon Plotkin * and Matija Pretnar

Laboratory for Foundations of Computer Science,
School of Informatics, University of Edinburgh, Scotland

atment of exception handlers and,
epr

Abstract. We present an algebraic t
more generally, introduce handlers for other computational effec
sentable by an algebraic theory. These include nondeterminism, intera
tive input/output, c state, time, and their combinations; in
all cases the computation monad is the free-model monad of the theory.
Fach such handler corresponds to a model of the theory for the effects
at hand. The handling construct, which applies a handler to a compu-
tation, is based on the one introduced by Benton and Kennedy, and is

I

rrency

1 T et aren]

it 4 Tl R TR

Growing interest in academia

PLDI'21

kesrk@cse.iitm.ac.in

Tom Kelly
OCaml Labs
Cambridge, UK
tom kelly@cantab.net

Abstract

Effect handlers have been gathering momentum as a mech-
anism for modular programming with user-defined effects.
Effect handlers allow for non-local control flow mechanisms
such as generators, async/await, lightweight threads and
coroutines to be composably expressed. We present a design
and evaluate a full-fledged efficient implementation of effect
handlers for OCaml, an industrial-strength multi-paradigm
programming language. Our implementation strives to main-
tain the backwards c y and p profile of
existing OCaml code. Retrofitting effect handlers onto OCaml
is challenging since OCaml does not currently have any non-
local control flow mechanisms other than exceptions. Our
implementation of effect handlers for OCaml: (i) imposes a
mean 1% overhead on a comprehensive macro benchmark
suite that does not use effect handlers; (ii) remains compati-
ble with program analysis tools that inspect the stack; and
(iii) s efficient for new code that makes use of effect handlers.

CCS Concepts: + Software and its engineering — Run-
time envi Concurrent struc-
fures: Control structures: Parallel brosrammine laneuaees:

stephen.dolan@cl.cam.ac.uk

Sadiq Jaffer
Opsian and OCaml Labs
Cambridge, UK
sadiq@toao.com

Retrofitting Effect Handlers onto OCaml

KC Sivaramakrishnan Stephen Dolan Leo White
1T Madras OCaml Labs Jane Street
Chennai, India Cambridge, UK London, UK

leo@Ipw25.net

Anil Madhavapeddy
University of Cambridge and OCaml Labs
Cambridge, UK
avsm2@cl.cam.ac.uk

1 Introduction

Effect handlers [45] provide a modular foundation for user-
defined effects. The key idea is to separate the definition of
the effectful operations from their interpretations, which are
given by handlers of the effects. For example,

effect In_line : in_channel -> string
declares an effect In_line, which is parameterised with an
input channel of type in_channel, which when performed re-
turns a string value. A computation can perform the 1n_line
effect without knowing how the In_1ine effect is implemented.
This computation may be enclosed by different handlers that
handle 1n_line differently. For example, In_line may be imple-
mented by performing a blocking read on the input channel
or performing the read asynchronously by offloading it to an
event loop such as libuv, without changing the computation.
Thanks to the separation of effectful operations from their
implementation, effect handlers enable new approaches to
modular programming. Effect handlers are a generalisation
of exception handlers, where, in addition to the effect being
handled, the handler is provided with the delimited contin-
uation [14] of the perform site. This continuation may be

Growing interest in academia

PLDI'21

Rel

KC Sivara
1T M
Chenna
kesrk@cse,

Tom
OCaml
Cambri
tom kelly@|

Abstract

Effect handlers have b|
anism for modular pr

Effect handlers allow f{
such as generators, a:
coroutines to be comp
and evaluate a full-fled
handlers for OCaml, af
programming languag
tain the backwards corf
existing OCaml code. R
is challenging since O

local control flow me:

implementation of eff¢
mean 1% overhead on|
suite that does not use
ble with program anal
(i) is efficient for new
CCS Concepts: + Soft|

time environments;|
tures: Control structi

OOPSLA'22

High-Level Effect Handlers in C++

DAN GHICA, Huawei Central Software Institute, Edinburgh, UK

SAM LINDLEY, The University of Edinburgh, UK

MARCOS MARONAS BRAVO, Huawei Central Software Institute, Edinburgh, UK
MACIE] PIROG, Huawei Central Software Institute, Edinburgh, UK

Effect handlers allow the programmer to implement computational effects, such as custom error handling,
various forms of lightweight concurrency, and dynamic binding, inside the programming language. We
introduce cpp-effects, a C++ library for effect handlers with a typed high-level, object-oriented interface.
We demonstrate that effect handlers can be successfully applied in imperative systems programming languages
with manual memory management. Through a collection of examples, we explore how to program effectively
with effect handlers in C++, discuss the intricacies and challenges of the implementation, and show that despite
its limitations, cpp-effects performance is competitive and in some cases even outperforms state-of-the-art
approaches such as C++20 coroutines and the 1ibmprompt library for multiprompt delimited control.

CCS Concepts: « Software and its engineering — Control structures; Coroutines; Concurrent programming
structures.

Additional Key Words and Phrases: Effect handlers, algebraic effects, lightweight concurrency, context switch-
ing

ACM Reference Format:

Dan Ghica, Sam Lindley, Marcos Maronas Bravo, and Maciej Pirog. 2022. High-Level Effect Handlers in C++.
Proc. ACM Progoram. Lang. 6. OOPSLA2. Article 183 (October 2022). 29 pages. https://doi.org/10.1145/3563445

Growing interest in academia

PLDI'21

Rel

KC Sivara
1T M
Chenna
kesrk@cse,

Tom
OCaml
Cambri
tom kelly@|

Abstract

Effect handlers have b|
anism for modular pr

Effect handlers allow f{
such as generators, a:
coroutines to be comp
and evaluate a full-fled
handlers for OCaml, af
programming languag
tain the backwards corf
existing OCaml code. R
is challenging since O

local control flow me:

implementation of eff¢
mean 1% overhead on|
suite that does not use
ble with program anal
(i) is efficient for new
CCS Concepts: + Soft|

time environments;|
tures: Control structi

OOPSLA'22

High-Level

DAN GHICA, H
SAM LINDLEY,
MARCOS MAR
MACIEJ PIROG

Effect handlers allo
various forms of I
introduce cpp-effe
We demonstrate tha
with manual memor
with effect handlers
its limitations, cpp-|
approaches such as
CCS Concepts: » Sof]
structures.

Additional Key Wor
ing
ACM Reference F

Dan Ghica, Sam Li
Proc. ACM Program)

OOPSLA'23

Continuing WebAssembly with Effect Handlers

LUNA PHIPPS-COSTIN, Northeastern University, United States

ANDREAS ROSSBERG, Independent, Germany

ARJUN GUHA, Northeastern University and Roblox, United States

DAAN LEIJEN, Microsoft Research, United States

DANIEL HILLERSTROM, Huawei Zurich Research Center, Switzerland

KC SIVARAMAKRISHNAN, Tarides and II'T Madras, India

MATIJA PRETNAR, University of Ljubljana and Institute of Mathematics, Physics & Mechanics, Slovenia
SAM LINDLEY, The University of Edinburgh, United Kingdom

‘WebAssembly (Wasm) is a low-level portable code format offering near native performance. It is intended
as a compilation target for a wide variety of source languages. However, Wasm provides no direct support
for non-local control flow features such as async/await, generators/iterators, lightweight threads, first-class
continuations, etc. This means that compilers for source languages with such features must ceremoniously
transform whole source programs in order to target Wasm.

We present WasmFX, an extension to Wasm which provides a universal target for non-local control features
via effect handlers, enabling compilers to translate such features directly into Wasm. Our extension is minimal

Growing interest in academia

PLDI'21

Rel

KC Sivara
1T M
Chenna
kesrk@cse,

Tom
OCaml
Cambri
tom kelly@|

Abstract

Effect handlers have b|
anism for modular pr
Effect handlers allow f{
such as generators, a:
coroutines to be comp
and evaluate a full-fled
handlers for OCaml, af
programming languag
tain the backwards corf
existing OCaml code. R
is challenging since O

local control flow me:

implementation of eff¢
mean 1% overhead on|
suite that does not use
ble with program anal
(i) is efficient for new
CCS Concepts: + Soft|

time environments;|
tures: Control structi

OOPSLA'22

High-Level

DAN GHICA, H
SAM LINDLEY,
MARCOS MAR
MACIEJ PIROG

Effect handlers allo
various forms of I
introduce cpp-effg
We demonstrate tha
with manual memor
with effect handlers
its limitations, cpp-|
approaches such as
CCS Concepts: » Sof]
structures.

Additional Key Wor
ing
ACM Reference F

Dan Ghica, Sam Li
Proc. ACM Program)

OOPSLA'23

Continuing

LUNA PHIPPS-
ANDREAS ROS
ARJUN GUHA,
DAAN LEIJEN,
DANIEL HILLER
KC SIVARAMA
MATIJA PRETN
SAM LINDLEY,

‘WebAssembly (Wa:
as a compilation ta;
for non-local contr
continuations, etc.
transform whole sof
We present Was
via effect handlers, e

OOPSLA'24

Effect Handlers for C via Coroutines

MARIO ALVAREZ-PICALLO, Huawei Research Centre, United Kingdom

TEODORO FREUND, Huawei Research Centre, United Kingdom

DAN R. GHICA, Huawei Research Centre, United Kingdom and University of Birmingham, United Kingdom
SAM LINDLEY, The University of Edinburgh, United Kingdom

Effect handlers provide a structured means for implementing user-defined, composable, and customisable
computational effects, ranging from exceptions to generators to lightweight threads. We introduce libseff,
a novel effect handlers library for C, based on coroutines. Whereas prior effect handler libraries for C are
intended primarily as compilation targets, libseff is intended to be used directly from C programs. As such,
the design of 1ibseff parts ways from traditional effect handler implementations, both by using mutable
coroutines as the main representation of pending computations, and by avoiding closures as handlers by w
of reified effects. We show that the performance of libseff is competitive across a range of platforms arnid
benchmarks.

Growing interest in industry

SEMANTICS code analysis service

9,\ @ JavaScript library for building Ul

React

Uber 7[Python probabilistic programming

PYRO

Fusing industry and academia at Github

ICFP'22

Fusing Industry and Academia at GitHub (Experience Report)

PATRICK THOMSON, GitHub, Inc., United States

ROB RIX, GitHub, Inc., Canada

NICOLAS WU, Imperial College London, United Kingdom
TOM SCHRIJVERS, KU Leuven, Belgium

GitHub hosts hundreds of millions of code repositories written in hundreds of different programming languages.
In addition to its hosting services, GitHub provides data and insights into code, such as vulnerability analysis
and code navigation, with which users can improve and understand their software development process.
GitHub has built SEMANTIC, a program analysis tool capable of parsing and extracting detailed information
from source code. The development of SEMANTIC has relied extensively on the functional programming
literature; this paper describes how connections to academic research inspired and informed the development
of an industrial-scale program analysis toolkit.

CCS Concepts: « Software and its engineering — General programming languages; « Social and
professional topics — History of programming languages.

Additional Key Words and Phrases: effects, Haskell, data types, industry

ACM Reference Format:

Patrick Thomson, Rob Rix, Nicolas Wu, and Tom Schrijvers. 2022. Fusing Industry and Academia at GitHub
(Experience Report). Proc. ACM Program. Lang. 6, ICFP, Article 108 (August 2022), 16 pages. https://doi.org/10.
1145/3547639

1 INTRODUCTION 7

GitHub is a service that nrovides storace for renositories of source code tracked with the Git

Fusing industry and academia at Github

ICFP'22

Fusing Industry and Academia at GitHub (Experience Report)

DATRICK THOAMSON Cilluh Taa ITnitad Sta

“An example of the utility and flexibility of algebraic effects is an effect we developed
to extract telemetry data from our production Haskell systems.”

“In a production context, we wanted these data to be uploaded to an aggregator; in a
development context we wanted to see them reported on the command-line; and when
running automated tests, we wanted to discard them entirely”

Additional Key Words and Phrases: effects, Haskell, data types, industry
ACM Reference Format:
Patrick Thomson, Rob Rix, Nicolas Wu, and Tom Schrijvers. 2022. Fusing Industry and Academia at GitHub

(Experience Report). Proc. ACM Program. Lang. 6, ICFP, Article 108 (August 2022), 16 pages. https://doi.org/10.
1145/3547639

1 INTRODUCTION

GitHub is a service that nrovides storace for renositories of source code tracked with the Git

Effect handler research languages

FF

https://www.eff-lang.org/

m

@ Koka https://koka-lang.github.io

' Links https://links-lang.org/
: Effekt https://effekt-lang.org/
—-—

https://www.eff-lang.org/
https://koka-lang.github.io
https://links-lang.org/
https://effekt-lang.org/

1. Algebraic effects

1. Algebraic effects

1.1. Introduction

How do effects arise?

i.e., how do we “construct” them in a programming language?

10

Algebraic effects

An algebraic effect is given by

> operations (i.e. effect constructors) with signatures
> a set of axioms

11

Algebraic effects

An algebraic effect is given by

> operations (i.e. effect constructors) with signatures
> a set of axioms

signatures: put; : 1, puts: 1, get : 2
» Read putp(m) as “put b, and continue with m".
» Read get(m, n) as "get the boolean value, continue with m if true, and n otherwise” .

11

Algebraic effects

An algebraic effect is given by

> operations (i.e. effect constructors) with signatures
> a set of axioms

signatures: put; : 1, puts: 1, get : 2
» Read putp(m) as “put b, and continue with m".
» Read get(m, n) as "get the boolean value, continue with m if true, and n otherwise” .

axioms: the set of axioms
» get(m,m) = m » get(put.(m), puts(n)) = get(m, n)
> get(get(m, m'), get(n, ') = get(m,n') > puts(get(my, mr)) = puts(mp)
> putb(putb/(m)) = putbl(m)
11

Interpretation of one boolean location

Interpretation Tp(X) =B — (X x B)

[c] = Xs.(c,s)
[get(m,n)] = As.if s then [m]s else [n]s
[putpy(m)] = As. [m]b

12

Interpretation of one boolean location

Interpretation Tp(X) =B — (X x B)
[c] = Xs.(c,s)
[get(m,n)] = As.if s then [m]s else [n]s
[putpy(m)] = As. [m]b
Sound and complete with respect to the equations:

m = n <= [m] = [n]

12

Interpretation of one boolean location

Interpretation Tp(X) =B — (X x B)
[c] = Xs.(c,s)
[get(m,n)] = As.if s then [m]s else [n]s
[putpy(m)] = As. [m]b
Sound and complete with respect to the equations:
m = n <= [m] = [n]

Example: put(get(m:, m¢)) = pute(m;)

12

Interpretation of one boolean location

Interpretation Tp(X) =B — (X x B)
[c] = Xs.(c,s)
[get(m,n)] = As.if s then [m]s else [n]s
[putpy(m)] = As. [m]b
Sound and complete with respect to the equations:
m = n <= [m] = [n]
Example: put:(get(m¢, m¢)) = puti(m;)
> [puti(get(me, me))] = As. [get(me, me)]t = As. (As. if s then [m;]s else [m¢]s)t
= MAs. if t then [m;]t else [m¢]t = As. [m,]t

12

Interpretation of one boolean location

Interpretation Tp(X) =B — (X x B)
[c] = Xs.(c,s)
[get(m,n)] = As.if s then [m]s else [n]s
[putpy(m)] = As. [m]b
Sound and complete with respect to the equations:
m = n <= [m] = [n]
Example: put:(get(m¢, m¢)) = puti(m;)
> [puti(get(me, me))] = As. [get(me, me)]t = As. (As. if s then [m;]s else [m¢]s)t
= As. if t then [m]t else [m¢]t = As. [m;]t
> [put:(m:)] = As. [my]t

12

Interpretation of one boolean location

Interpretation Tp(X) =B — (X x B)
[c] = Xs.(c,s)
[get(m,n)] = As.if s then [m]s else [n]s
[putpy(m)] = As. [m]b
Sound and complete with respect to the equations:
m = n <= [m] = [n]
Example: put:(get(m¢, m¢)) = puti(m;)
> [puti(get(me, me))] = As. [get(me, me)]t = As. (As. if s then [m;]s else [m¢]s)t
= As. if t then [m]t else [m¢]t = As. [m;]t
> [put:(m:)] = As. [my]t
Exercise 1: Show other equations hold.

12

Interpretation of one boolean location

Interpretation Tp(X) =B — (X x B)
[c] = Xs.(c,s)
[get(m,n)] = As.if s then [m]s else [n]s
[putpy(m)] = As. [m]b
Sound and complete with respect to the equations:
m = n <= [m] = [n]
Example: put:(get(m¢, m¢)) = puti(m;)
> [puti(get(me, me))] = As. [get(me, me)]t = As. (As. if s then [m;]s else [m¢]s)t
= As. if t then [m]t else [m¢]t = As. [m;]t
> [put:(m:)] = As. [my]t

Exercise 1: Show other equations hold.

Exercise 2: Show that the get-get equation is redundant. 12

Interpretation of one boolean location (2)

A different interpretation: Tjog(X) = B — (X x List B)
[c] = As. (c.[s])

[get(m,n)] = As.if s then [m]s else [n]s
[putp(m)] = As.let (n,s) < [m]bin (n,b::s)

13

Interpretation of one boolean location (2)

A different interpretation: Tjog(X) = B — (X x List B)
[c] = As. (c.[s])
[get(m,n)] = As.if s then [m]s else [n]s
[putp(m)] = As.let (n,s) < [m]bin (n,b::s)

Complete with respect to the equations:

m = n <= [m] = [n]

13

Interpretation of one boolean location (2)

A different interpretation: Tjog(X) = B — (X x List B)

[c] = As. (c.[s])
[get(m,n)] = As.if s then [m]s else [n]s
[putp(m)] = As.let (n,s) < [m]bin (n,b::s)

Complete with respect to the equations:
m = n <= [m] = [n]

But not sound:
[puts(puty (m))] # [putsy (m)]

> the left hand side logs twice, while the right hand side only logs once

13

Interpretation of one boolean location (3)

Another interpretation: Tgiscard(X) = B — X

[ec] = As.c
[get(m,n)] = As.if s then [m]s else [n]s
[putp(m)] = As. [m]b

14

Interpretation of one boolean location (3)

Another interpretation: Tgiscard(X) = B — X

[ec] = As.c
[get(m,n)] = As.if s then [m]s else [n]s
[putp(m)] = As. [m]b

Sound with respect to the equations:

m=n= [m] = [n]

14

Interpretation of one boolean location (3)

Another interpretation: Tgiscard(X) = B — X

[ec] = As.c
[get(m,n)] = As.if s then [m]s else [n]s
[putp(m)] = As. [m]b

Sound with respect to the equations:

m = n= [m] = [n]

But incomplete:
[puty(m)] = [m] but putp(m) # m

14

Another example: exception

signatures: raisee : 0 (e€E)
axioms: none

interpretation: Te(X) =X+ E

[c] = inl(c)

[raisec] = inr(e)

15

Yet another example: non-determinisim

signatures: or : 2

» Read or(m, n) as “non-deterministically runs m or n".

axioms:
> or(m,or(n,p)) = or(or(m,n), p) (associativity)
> or(m,n) = or(n, m) (commutativity)
> or(m,m)=m (absorption)

interpretation: T,ger(X) = FT(X) collection of non-empty finite subsets of X

[c] = {c}
[or(m,m)] = [m]uU(n]

16

An algebraic effect is given by

» operations (i.e. effect constructors) with signatures
> a set of axioms

17

An algebraic effect is given by

» operations (i.e. effect constructors) with signatures
> a set of axioms

Is a set of axioms the right set of axioms?

» An equational theory is equationally inconsistent if it proves x = y.

> An equational theory is Hilbert-Post complete if adding an unprovable equation
makes it equationally inconsistent.

17

An algebraic effect is given by

» operations (i.e. effect constructors) with signatures
> a set of axioms

Is a set of axioms the right set of axioms?

» An equational theory is equationally inconsistent if it proves x = y.
> An equational theory is Hilbert-Post complete if adding an unprovable equation
makes it equationally inconsistent.

Different interpretations are useful in practice, so sometimes people use effects without
equations.

17

Algebraicity

From the literature:

Fix a finitary equational axiomatic theory Ax. Then for any set
X and operation symbol op : n we have the function:

Tan(X)" 2%, 7 (X)
Further for any function f : X — Ta(Y), ' is a homomorphism:

n OPFa,

X
Tae(X)" —250 70 (X)

fr

(f1)"

Tax(Y)"

Tax(Y)
OPF,,(Y)

We call such a polymorphic family of functions
Tax(X)" 25 Tax(X) algebraic. 18

Algebraicity

From the literature:

en for any set
ion:

Fix a finitary ec§ MONADS ARE JUST MONOIDS IN
GRRLEREL THE CATEGORY OF ENDOFUNCTORS

Further for any 3

We call such a g

peeoiR<yy WHAT'S THE PRO 18

Programming counterpart of being algebraic

Evaluation context E :=0O|E n|(Ax. m) E

For any operation op : n, we have:

Elop(my,...,m,)] = op(E[m1], ..., E[m})])

19

Programming counterpart of being algebraic

Evaluation context E :=0O|E n|(Ax. m) E

For any operation op : n, we have:

Elop(my,...,m,)] = op(E[m1], ..., E[m})])

> raise.() n = raisee() > or(m,n) p=or(m p,n p)
> (Ax. m) raise.() = raisee() > (Ax. p) or(m, n) = or((Ax. p) m, (Ax. p) n)

19

Summary of algebraic effects

An algebraic effect is given by

> operations (i.e. effect constructors) with signatures

» a set of axioms
Algebracity

» operations commute with evaluation contexts

20

Summary of algebraic effects

An algebraic effect is given by

> operations (i.e. effect constructors) with signatures

> a set of axioms
Algebracity

» operations commute with evaluation contexts
Next:

» computational trees and free monads
> generic effects

20

1. Algebraic effects

1.2. Computational trees and free monad

21

An example program

Recall the boolean location with signature

put @ 1, putr . 1, get : 2

22

An example program

Recall the boolean location with signature

put @ 1, putr . 1, get : 2

Consider a term toggle = get(puts(t), put:(f))

Question: What is this term doing?

22

Computational trees

op

Values Operations

» A computational tree is a tree whose leaves are values, and internal nodes are
operations.

23

Computational trees

toggle = get(puts(t), put:(f))

get

putr put;

24

Computational trees

get

or puty

Question: what is this program doing?

25

Computational trees

get

or puty

Question: what is this program doing?

get(or(raise, t), put:(f)) 25

Computational trees
A computational tree is a tree whose leaves are values, and internal nodes are

operations.

Computational trees as free monads
Free (f (Free f a))

data Free f a = Pure a |
> Pure a: Represents a pure value, effectively the return of a monad

> Free (f (Free f a)): Represents an operation that produces another Free f a

computation.
The bind performs substitution at the leaves
r C
op (m1 >>=r, , mn >== r)

return c >>=r
, mn) >>=r1

op(mil,

26

	1. Algebraic effects
	1.1. Introduction
	1.2. Computational trees and free monad

