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Effects are everywhere

➤ Input/output

➤ Read/Write

➤ Exceptions

➤ Mutable states

➤ Concurrency

➤ Backtracking

➤ . . .

Effects are often ad-hoc and hard-coded.
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Algebraic effects and effect handlers

Composable and structured control-flow abstraction.

Adequacy for Algebraic Effects

Gordon Plotkin and John Power ?

Division of Informatics, University of Edinburgh, King’s Buildings,
Edinburgh EH9 3JZ, Scotland

Abstract. Moggi proposed a monadic account of computational effects.
He also presented the computational λ-calculus, λc, a core call-by-value
functional programming language for effects; the effects are obtained by
adding appropriate operations. The question arises as to whether one
can give a corresponding treatment of operational semantics. We do
this in the case of algebraic effects where the operations are given by
a single-sorted algebraic signature, and their semantics is supported by
the monad, in a certain sense. We consider call-by-value PCF with—
and without—recursion, an extension of λc with arithmetic. We prove
general adequacy theorems, and illustrate these with two examples: non-
determinism and probabilistic nondeterminism.

1 Introduction

Moggi introduced the idea of a general account of computational effects, propos-
ing encapsulating them via monads T : C → C; the main idea is that T (x) is
the type of computations of elements of x. He also presented the computational
λ-calculus λc as a core call-by-value functional programming language for ef-
fects [21]. The effects themselves are obtained by adding appropriate operations,
specified by a signature Σ. Moggi introduced the consideration of these opera-
tions in the context of his metalanguage ML(Σ) whose purpose is to give the
semantics of programming languages [22, 23], but which is not itself thought of
as a programming language.

In our view any complete account of computation should incorporate a treat-
ment of operational semantics; this has been lacking for the monadic view. To
progress, one has to deal with the operations as they are the source of the effects.
In this paper we give such a treatment in the case of algebraic effects where the
operations are given by a single-sorted algebraic signature Σ; semantically such
an n-ary operation f is taken to denote a family of morphisms

fx : T (x)n −→ T (x)

parametrically natural with respect to morphisms in the Kleisli category CT ;
T is then said to support the family fx. (In [22] only naturality with respect
to morphisms in C is considered; we use the stronger assumption.) Note that
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Abstract. We present an algebraic treatment of exception handlers and,
more generally, introduce handlers for other computational effects repre-
sentable by an algebraic theory. These include nondeterminism, interac-
tive input/output, concurrency, state, time, and their combinations; in
all cases the computation monad is the free-model monad of the theory.

Each such handler corresponds to a model of the theory for the effects
at hand. The handling construct, which applies a handler to a compu-
tation, is based on the one introduced by Benton and Kennedy, and is
interpreted using the homomorphism induced by the universal property
of the free model. This general construct can be used to describe previ-
ously unrelated concepts from both theory and practice.

1 Introduction

In seminal work, Moggi proposed a uniform representation of computational ef-
fects by monads [1–3]. The computations that return values from a set X are
represented by elements of TX, for a suitable monad T . Examples include excep-
tions, nondeterminism, interactive input/output, concurrency, state, time, con-
tinuations, and combinations thereof. Plotkin and Power later proposed to focus
on algebraic effects, that is effects that allow a representation by operations and
equations [4–6]; the operations give rise to the effects at hand. All of the effects
mentioned above are algebraic, with the notable exception of continuations [7],
which have to be treated differently (see [8] for initial ideas).

In the algebraic approach the arguments of an operation represent possible
computations after an occurrence of an effect. For example, using a binary choice
operation or :2, a nondeterministically chosen boolean is represented by the term
or(return true, return false) :Fbool, where Fσ stands for the type of computations
that return values of type σ. The equations of the theory, for example the ones
stating that or is a semi-lattice operation, generate the free-model functor, which
is exactly the monad proposed by Moggi to model the corresponding effect [9]
(modulo the forgetful functor) and which is used to interpret the type Fσ. The
operations are then interpreted by the model structure. When viewed as a fam-
ily of functions parametric in X, e.g., orX : TX2 → TX, one obtains a so-called
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Abstract
Effect handlers have been gathering momentum as a mech-
anism for modular programming with user-defined effects.
Effect handlers allow for non-local control flow mechanisms
such as generators, async/await, lightweight threads and
coroutines to be composably expressed. We present a design
and evaluate a full-fledged efficient implementation of effect
handlers for OCaml, an industrial-strength multi-paradigm
programming language. Our implementation strives to main-
tain the backwards compatibility and performance profile of
existingOCaml code. Retrofitting effect handlers ontoOCaml
is challenging since OCaml does not currently have any non-
local control flow mechanisms other than exceptions. Our
implementation of effect handlers for OCaml: (i) imposes a
mean 1% overhead on a comprehensive macro benchmark
suite that does not use effect handlers; (ii) remains compati-
ble with program analysis tools that inspect the stack; and
(iii) is efficient for new code that makes use of effect handlers.

CCS Concepts: • Software and its engineering → Run-
time environments; Concurrent programming struc-
tures;Control structures; Parallel programming languages;
Concurrent programming languages.

Keywords: Effect handlers, Backwards compatibility, Fibers,
Continuations, Backtraces
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1 Introduction
Effect handlers [45] provide a modular foundation for user-
defined effects. The key idea is to separate the definition of
the effectful operations from their interpretations, which are
given by handlers of the effects. For example,
effect In_line : in_channel -> string

declares an effect In_line, which is parameterised with an
input channel of type in_channel, which when performed re-
turns a string value. A computation can perform the In_line

effect without knowing how the In_line effect is implemented.
This computation may be enclosed by different handlers that
handle In_line differently. For example, In_linemay be imple-
mented by performing a blocking read on the input channel
or performing the read asynchronously by offloading it to an
event loop such as libuv, without changing the computation.
Thanks to the separation of effectful operations from their
implementation, effect handlers enable new approaches to
modular programming. Effect handlers are a generalisation
of exception handlers, where, in addition to the effect being
handled, the handler is provided with the delimited contin-
uation [14] of the perform site. This continuation may be
used to resume the suspended computation later. This en-
ables non-local control-flow mechanisms such as resumable
exceptions, lightweight threads, coroutines, generators and
asynchronous I/O to be composably expressed.
One of the primary motivations to extend OCaml with

effect handlers is to natively support asynchronous I/O in
order to express highly scalable concurrent applications such
as web servers in direct style (as opposed to using callbacks).
Many programming languages, including OCaml, require
non-local changes to source code in order to support asyn-
chronous I/O, often leading to a dichotomy between syn-
chronous and asynchronous code [10]. For asynchronous
I/O, OCaml developers typically use libraries such as Lwt [53]
and Async [40, ğ18], where asynchronous functions are rep-
resented as monadic computations. In these libraries, while
asynchronous functions can call synchronous functions di-
rectly, the converse is not true. In particular, any function
that calls an asynchronous function will also have to be
marked as asynchronous. As a result, large parts of the appli-
cations using these libraries end up being in monadic form.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
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High-Level Effect Handlers in C++

DAN GHICA, Huawei Central Software Institute, Edinburgh, UK
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Effect handlers allow the programmer to implement computational effects, such as custom error handling,
various forms of lightweight concurrency, and dynamic binding, inside the programming language. We
introduce cpp-effects, a C++ library for effect handlers with a typed high-level, object-oriented interface.
We demonstrate that effect handlers can be successfully applied in imperative systems programming languages
with manual memory management. Through a collection of examples, we explore how to program effectively
with effect handlers in C++, discuss the intricacies and challenges of the implementation, and show that despite
its limitations, cpp-effects performance is competitive and in some cases even outperforms state-of-the-art
approaches such as C++20 coroutines and the libmprompt library for multiprompt delimited control.

CCS Concepts: • Software and its engineering→Control structures; Coroutines; Concurrent programming
structures.

Additional Key Words and Phrases: Effect handlers, algebraic effects, lightweight concurrency, context switch-
ing

ACM Reference Format:
Dan Ghica, Sam Lindley, Marcos Maroñas Bravo, and Maciej Piróg. 2022. High-Level Effect Handlers in C++.
Proc. ACM Program. Lang. 6, OOPSLA2, Article 183 (October 2022), 29 pages. https://doi.org/10.1145/3563445

1 INTRODUCTION
Effect handlers [Plotkin and Pretnar 2009, 2013] are an expressive control mechanism that allows
programmers to define and manage bespoke, fit-for-purpose computational effects. Typical ex-
amples include customised error handling, mutable state, input/output, lightweight concurrency,
dependency injection, and dynamic binding. Handlers also allow for transparent composition of
effects Ð both with each other and with native effects built into the language. From an engineering
methodology perspective, the advantage of handlers is the explicit separation of effect definitions
from their programming interface, a collection of commands (also known elsewhere in the literature
as operations). This makes the abstraction ergonomic, as it does not require any exotic conventions
to use an effect, in contrast to programming with monads, for instance. It also makes the job of
instrumenting existing code possible without extensive rewriting.
One application of effect handlers which is emerging as increasingly important is lightweight

cooperative concurrency, that is, concurrency in which all tasks are realised on a single OS thread,
without pre-emption. Effect handlers can lead to streamlined and efficient implementations of
lightweight (green) threads with different kinds of schedulers, fibers, generators, async/await,

Authors’ addresses: Dan Ghica, Huawei Central Software Institute, Edinburgh, UK; Sam Lindley, The University of Edinburgh,
UK; Marcos Maroñas Bravo, Huawei Central Software Institute, Edinburgh, UK; Maciej Piróg, Huawei Central Software
Institute, Edinburgh, UK.
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WebAssembly (Wasm) is a low-level portable code format offering near native performance. It is intended
as a compilation target for a wide variety of source languages. However, Wasm provides no direct support
for non-local control flow features such as async/await, generators/iterators, lightweight threads, first-class
continuations, etc. This means that compilers for source languages with such features must ceremoniously
transform whole source programs in order to target Wasm.

We presentWasmFX, an extension to Wasm which provides a universal target for non-local control features
via effect handlers, enabling compilers to translate such features directly into Wasm. Our extension is minimal
and only adds three main instructions for creating, suspending, and resuming continuations. Moreover, our
primitive instructions are type-safe providing typed continuations which are well-aligned with the design
principles of Wasm whose stacks are typed. We present a formal specification of WasmFX and show that the
extension is sound. We have implemented WasmFX as an extension to the Wasm reference interpreter and
also built a prototype WasmFX extension for Wasmtime, a production-grade Wasm engine, piggybacking on
Wasmtime’s existing fibers API. The preliminary performance results for our prototype are encouraging, and
we outline future plans to realise a native implementation.

CCS Concepts: • Theory of computation→ Control primitives; Operational semantics.

Additional Key Words and Phrases: WebAssembly, effect handlers, stack switching
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1 INTRODUCTION
WebAssembly (also known as Wasm) [Haas et al. 2017; Rossberg 2019, 2023] is a low-level virtual
machine designed to be safe and fast, while being both language- and platform-independent. A
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Effect handlers provide a structured means for implementing user-defined, composable, and customisable
computational effects, ranging from exceptions to generators to lightweight threads. We introduce libseff,
a novel effect handlers library for C, based on coroutines. Whereas prior effect handler libraries for C are
intended primarily as compilation targets, libseff is intended to be used directly from C programs. As such,
the design of libseff parts ways from traditional effect handler implementations, both by using mutable
coroutines as the main representation of pending computations, and by avoiding closures as handlers by way
of reified effects. We show that the performance of libseff is competitive across a range of platforms and
benchmarks.

CCS Concepts: • Software and its engineering→ Control structures; Coroutines.

Additional Key Words and Phrases: Effect Handlers, Coroutines, C

ACM Reference Format:
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1 Introduction
Effect handler oriented programming languages and libraries empower programmers to define
custom effectful operations whose semantics is specified later by a suitable effect handler [24].
The power of handlers lies in their ability to support fine-grained customisation (a given effectful
computation can be handled by different handlers that give it different behaviours, such as imple-
menting a different scheduling strategy), and their composability (handlers can be composed to
allow using multiple different effects in the same program).

A central aspect of effect handlers is that when handling an operation they are provided with an
explicit representation of the continuation of the code that performed the operation (that is the
rest of the computation from the operation invocation up to the point at which the handler was
installed). A continuation is a first-class object that can be resumed immediately, aborted entirely,
or delayed for later execution. In this sense, effect handlers can be seen as providing a form of
first-class resumable exceptions, and allow for the implementation of sophisticated forms of control
flow, such as async/await, exceptions, generators and varied forms of lightweight concurrency,
entirely as user-defined libraries.
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Abstract
Effect handlers have been gathering momentum as a mech-
anism for modular programming with user-defined effects.
Effect handlers allow for non-local control flow mechanisms
such as generators, async/await, lightweight threads and
coroutines to be composably expressed. We present a design
and evaluate a full-fledged efficient implementation of effect
handlers for OCaml, an industrial-strength multi-paradigm
programming language. Our implementation strives to main-
tain the backwards compatibility and performance profile of
existingOCaml code. Retrofitting effect handlers ontoOCaml
is challenging since OCaml does not currently have any non-
local control flow mechanisms other than exceptions. Our
implementation of effect handlers for OCaml: (i) imposes a
mean 1% overhead on a comprehensive macro benchmark
suite that does not use effect handlers; (ii) remains compati-
ble with program analysis tools that inspect the stack; and
(iii) is efficient for new code that makes use of effect handlers.

CCS Concepts: • Software and its engineering → Run-
time environments; Concurrent programming struc-
tures;Control structures; Parallel programming languages;
Concurrent programming languages.
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1 Introduction
Effect handlers [45] provide a modular foundation for user-
defined effects. The key idea is to separate the definition of
the effectful operations from their interpretations, which are
given by handlers of the effects. For example,
effect In_line : in_channel -> string

declares an effect In_line, which is parameterised with an
input channel of type in_channel, which when performed re-
turns a string value. A computation can perform the In_line

effect without knowing how the In_line effect is implemented.
This computation may be enclosed by different handlers that
handle In_line differently. For example, In_linemay be imple-
mented by performing a blocking read on the input channel
or performing the read asynchronously by offloading it to an
event loop such as libuv, without changing the computation.
Thanks to the separation of effectful operations from their
implementation, effect handlers enable new approaches to
modular programming. Effect handlers are a generalisation
of exception handlers, where, in addition to the effect being
handled, the handler is provided with the delimited contin-
uation [14] of the perform site. This continuation may be
used to resume the suspended computation later. This en-
ables non-local control-flow mechanisms such as resumable
exceptions, lightweight threads, coroutines, generators and
asynchronous I/O to be composably expressed.
One of the primary motivations to extend OCaml with

effect handlers is to natively support asynchronous I/O in
order to express highly scalable concurrent applications such
as web servers in direct style (as opposed to using callbacks).
Many programming languages, including OCaml, require
non-local changes to source code in order to support asyn-
chronous I/O, often leading to a dichotomy between syn-
chronous and asynchronous code [10]. For asynchronous
I/O, OCaml developers typically use libraries such as Lwt [53]
and Async [40, ğ18], where asynchronous functions are rep-
resented as monadic computations. In these libraries, while
asynchronous functions can call synchronous functions di-
rectly, the converse is not true. In particular, any function
that calls an asynchronous function will also have to be
marked as asynchronous. As a result, large parts of the appli-
cations using these libraries end up being in monadic form.
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Effect handlers allow the programmer to implement computational effects, such as custom error handling,
various forms of lightweight concurrency, and dynamic binding, inside the programming language. We
introduce cpp-effects, a C++ library for effect handlers with a typed high-level, object-oriented interface.
We demonstrate that effect handlers can be successfully applied in imperative systems programming languages
with manual memory management. Through a collection of examples, we explore how to program effectively
with effect handlers in C++, discuss the intricacies and challenges of the implementation, and show that despite
its limitations, cpp-effects performance is competitive and in some cases even outperforms state-of-the-art
approaches such as C++20 coroutines and the libmprompt library for multiprompt delimited control.

CCS Concepts: • Software and its engineering→Control structures; Coroutines; Concurrent programming
structures.

Additional Key Words and Phrases: Effect handlers, algebraic effects, lightweight concurrency, context switch-
ing

ACM Reference Format:
Dan Ghica, Sam Lindley, Marcos Maroñas Bravo, and Maciej Piróg. 2022. High-Level Effect Handlers in C++.
Proc. ACM Program. Lang. 6, OOPSLA2, Article 183 (October 2022), 29 pages. https://doi.org/10.1145/3563445

1 INTRODUCTION
Effect handlers [Plotkin and Pretnar 2009, 2013] are an expressive control mechanism that allows
programmers to define and manage bespoke, fit-for-purpose computational effects. Typical ex-
amples include customised error handling, mutable state, input/output, lightweight concurrency,
dependency injection, and dynamic binding. Handlers also allow for transparent composition of
effects Ð both with each other and with native effects built into the language. From an engineering
methodology perspective, the advantage of handlers is the explicit separation of effect definitions
from their programming interface, a collection of commands (also known elsewhere in the literature
as operations). This makes the abstraction ergonomic, as it does not require any exotic conventions
to use an effect, in contrast to programming with monads, for instance. It also makes the job of
instrumenting existing code possible without extensive rewriting.
One application of effect handlers which is emerging as increasingly important is lightweight

cooperative concurrency, that is, concurrency in which all tasks are realised on a single OS thread,
without pre-emption. Effect handlers can lead to streamlined and efficient implementations of
lightweight (green) threads with different kinds of schedulers, fibers, generators, async/await,
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WebAssembly (Wasm) is a low-level portable code format offering near native performance. It is intended
as a compilation target for a wide variety of source languages. However, Wasm provides no direct support
for non-local control flow features such as async/await, generators/iterators, lightweight threads, first-class
continuations, etc. This means that compilers for source languages with such features must ceremoniously
transform whole source programs in order to target Wasm.

We presentWasmFX, an extension to Wasm which provides a universal target for non-local control features
via effect handlers, enabling compilers to translate such features directly into Wasm. Our extension is minimal
and only adds three main instructions for creating, suspending, and resuming continuations. Moreover, our
primitive instructions are type-safe providing typed continuations which are well-aligned with the design
principles of Wasm whose stacks are typed. We present a formal specification of WasmFX and show that the
extension is sound. We have implemented WasmFX as an extension to the Wasm reference interpreter and
also built a prototype WasmFX extension for Wasmtime, a production-grade Wasm engine, piggybacking on
Wasmtime’s existing fibers API. The preliminary performance results for our prototype are encouraging, and
we outline future plans to realise a native implementation.
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1 INTRODUCTION
WebAssembly (also known as Wasm) [Haas et al. 2017; Rossberg 2019, 2023] is a low-level virtual
machine designed to be safe and fast, while being both language- and platform-independent. A
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Effect handlers provide a structured means for implementing user-defined, composable, and customisable
computational effects, ranging from exceptions to generators to lightweight threads. We introduce libseff,
a novel effect handlers library for C, based on coroutines. Whereas prior effect handler libraries for C are
intended primarily as compilation targets, libseff is intended to be used directly from C programs. As such,
the design of libseff parts ways from traditional effect handler implementations, both by using mutable
coroutines as the main representation of pending computations, and by avoiding closures as handlers by way
of reified effects. We show that the performance of libseff is competitive across a range of platforms and
benchmarks.
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1 Introduction
Effect handler oriented programming languages and libraries empower programmers to define
custom effectful operations whose semantics is specified later by a suitable effect handler [24].
The power of handlers lies in their ability to support fine-grained customisation (a given effectful
computation can be handled by different handlers that give it different behaviours, such as imple-
menting a different scheduling strategy), and their composability (handlers can be composed to
allow using multiple different effects in the same program).

A central aspect of effect handlers is that when handling an operation they are provided with an
explicit representation of the continuation of the code that performed the operation (that is the
rest of the computation from the operation invocation up to the point at which the handler was
installed). A continuation is a first-class object that can be resumed immediately, aborted entirely,
or delayed for later execution. In this sense, effect handlers can be seen as providing a form of
first-class resumable exceptions, and allow for the implementation of sophisticated forms of control
flow, such as async/await, exceptions, generators and varied forms of lightweight concurrency,
entirely as user-defined libraries.
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Abstract
Effect handlers have been gathering momentum as a mech-
anism for modular programming with user-defined effects.
Effect handlers allow for non-local control flow mechanisms
such as generators, async/await, lightweight threads and
coroutines to be composably expressed. We present a design
and evaluate a full-fledged efficient implementation of effect
handlers for OCaml, an industrial-strength multi-paradigm
programming language. Our implementation strives to main-
tain the backwards compatibility and performance profile of
existingOCaml code. Retrofitting effect handlers ontoOCaml
is challenging since OCaml does not currently have any non-
local control flow mechanisms other than exceptions. Our
implementation of effect handlers for OCaml: (i) imposes a
mean 1% overhead on a comprehensive macro benchmark
suite that does not use effect handlers; (ii) remains compati-
ble with program analysis tools that inspect the stack; and
(iii) is efficient for new code that makes use of effect handlers.
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1 Introduction
Effect handlers [45] provide a modular foundation for user-
defined effects. The key idea is to separate the definition of
the effectful operations from their interpretations, which are
given by handlers of the effects. For example,
effect In_line : in_channel -> string

declares an effect In_line, which is parameterised with an
input channel of type in_channel, which when performed re-
turns a string value. A computation can perform the In_line

effect without knowing how the In_line effect is implemented.
This computation may be enclosed by different handlers that
handle In_line differently. For example, In_linemay be imple-
mented by performing a blocking read on the input channel
or performing the read asynchronously by offloading it to an
event loop such as libuv, without changing the computation.
Thanks to the separation of effectful operations from their
implementation, effect handlers enable new approaches to
modular programming. Effect handlers are a generalisation
of exception handlers, where, in addition to the effect being
handled, the handler is provided with the delimited contin-
uation [14] of the perform site. This continuation may be
used to resume the suspended computation later. This en-
ables non-local control-flow mechanisms such as resumable
exceptions, lightweight threads, coroutines, generators and
asynchronous I/O to be composably expressed.
One of the primary motivations to extend OCaml with

effect handlers is to natively support asynchronous I/O in
order to express highly scalable concurrent applications such
as web servers in direct style (as opposed to using callbacks).
Many programming languages, including OCaml, require
non-local changes to source code in order to support asyn-
chronous I/O, often leading to a dichotomy between syn-
chronous and asynchronous code [10]. For asynchronous
I/O, OCaml developers typically use libraries such as Lwt [53]
and Async [40, ğ18], where asynchronous functions are rep-
resented as monadic computations. In these libraries, while
asynchronous functions can call synchronous functions di-
rectly, the converse is not true. In particular, any function
that calls an asynchronous function will also have to be
marked as asynchronous. As a result, large parts of the appli-
cations using these libraries end up being in monadic form.
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Effect handlers allow the programmer to implement computational effects, such as custom error handling,
various forms of lightweight concurrency, and dynamic binding, inside the programming language. We
introduce cpp-effects, a C++ library for effect handlers with a typed high-level, object-oriented interface.
We demonstrate that effect handlers can be successfully applied in imperative systems programming languages
with manual memory management. Through a collection of examples, we explore how to program effectively
with effect handlers in C++, discuss the intricacies and challenges of the implementation, and show that despite
its limitations, cpp-effects performance is competitive and in some cases even outperforms state-of-the-art
approaches such as C++20 coroutines and the libmprompt library for multiprompt delimited control.
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1 INTRODUCTION
Effect handlers [Plotkin and Pretnar 2009, 2013] are an expressive control mechanism that allows
programmers to define and manage bespoke, fit-for-purpose computational effects. Typical ex-
amples include customised error handling, mutable state, input/output, lightweight concurrency,
dependency injection, and dynamic binding. Handlers also allow for transparent composition of
effects Ð both with each other and with native effects built into the language. From an engineering
methodology perspective, the advantage of handlers is the explicit separation of effect definitions
from their programming interface, a collection of commands (also known elsewhere in the literature
as operations). This makes the abstraction ergonomic, as it does not require any exotic conventions
to use an effect, in contrast to programming with monads, for instance. It also makes the job of
instrumenting existing code possible without extensive rewriting.
One application of effect handlers which is emerging as increasingly important is lightweight

cooperative concurrency, that is, concurrency in which all tasks are realised on a single OS thread,
without pre-emption. Effect handlers can lead to streamlined and efficient implementations of
lightweight (green) threads with different kinds of schedulers, fibers, generators, async/await,
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WebAssembly (Wasm) is a low-level portable code format offering near native performance. It is intended
as a compilation target for a wide variety of source languages. However, Wasm provides no direct support
for non-local control flow features such as async/await, generators/iterators, lightweight threads, first-class
continuations, etc. This means that compilers for source languages with such features must ceremoniously
transform whole source programs in order to target Wasm.

We presentWasmFX, an extension to Wasm which provides a universal target for non-local control features
via effect handlers, enabling compilers to translate such features directly into Wasm. Our extension is minimal
and only adds three main instructions for creating, suspending, and resuming continuations. Moreover, our
primitive instructions are type-safe providing typed continuations which are well-aligned with the design
principles of Wasm whose stacks are typed. We present a formal specification of WasmFX and show that the
extension is sound. We have implemented WasmFX as an extension to the Wasm reference interpreter and
also built a prototype WasmFX extension for Wasmtime, a production-grade Wasm engine, piggybacking on
Wasmtime’s existing fibers API. The preliminary performance results for our prototype are encouraging, and
we outline future plans to realise a native implementation.

CCS Concepts: • Theory of computation→ Control primitives; Operational semantics.
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1 INTRODUCTION
WebAssembly (also known as Wasm) [Haas et al. 2017; Rossberg 2019, 2023] is a low-level virtual
machine designed to be safe and fast, while being both language- and platform-independent. A
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Effect handlers provide a structured means for implementing user-defined, composable, and customisable
computational effects, ranging from exceptions to generators to lightweight threads. We introduce libseff,
a novel effect handlers library for C, based on coroutines. Whereas prior effect handler libraries for C are
intended primarily as compilation targets, libseff is intended to be used directly from C programs. As such,
the design of libseff parts ways from traditional effect handler implementations, both by using mutable
coroutines as the main representation of pending computations, and by avoiding closures as handlers by way
of reified effects. We show that the performance of libseff is competitive across a range of platforms and
benchmarks.
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1 Introduction
Effect handler oriented programming languages and libraries empower programmers to define
custom effectful operations whose semantics is specified later by a suitable effect handler [24].
The power of handlers lies in their ability to support fine-grained customisation (a given effectful
computation can be handled by different handlers that give it different behaviours, such as imple-
menting a different scheduling strategy), and their composability (handlers can be composed to
allow using multiple different effects in the same program).

A central aspect of effect handlers is that when handling an operation they are provided with an
explicit representation of the continuation of the code that performed the operation (that is the
rest of the computation from the operation invocation up to the point at which the handler was
installed). A continuation is a first-class object that can be resumed immediately, aborted entirely,
or delayed for later execution. In this sense, effect handlers can be seen as providing a form of
first-class resumable exceptions, and allow for the implementation of sophisticated forms of control
flow, such as async/await, exceptions, generators and varied forms of lightweight concurrency,
entirely as user-defined libraries.
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Abstract
Effect handlers have been gathering momentum as a mech-
anism for modular programming with user-defined effects.
Effect handlers allow for non-local control flow mechanisms
such as generators, async/await, lightweight threads and
coroutines to be composably expressed. We present a design
and evaluate a full-fledged efficient implementation of effect
handlers for OCaml, an industrial-strength multi-paradigm
programming language. Our implementation strives to main-
tain the backwards compatibility and performance profile of
existingOCaml code. Retrofitting effect handlers ontoOCaml
is challenging since OCaml does not currently have any non-
local control flow mechanisms other than exceptions. Our
implementation of effect handlers for OCaml: (i) imposes a
mean 1% overhead on a comprehensive macro benchmark
suite that does not use effect handlers; (ii) remains compati-
ble with program analysis tools that inspect the stack; and
(iii) is efficient for new code that makes use of effect handlers.
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1 Introduction
Effect handlers [45] provide a modular foundation for user-
defined effects. The key idea is to separate the definition of
the effectful operations from their interpretations, which are
given by handlers of the effects. For example,
effect In_line : in_channel -> string

declares an effect In_line, which is parameterised with an
input channel of type in_channel, which when performed re-
turns a string value. A computation can perform the In_line

effect without knowing how the In_line effect is implemented.
This computation may be enclosed by different handlers that
handle In_line differently. For example, In_linemay be imple-
mented by performing a blocking read on the input channel
or performing the read asynchronously by offloading it to an
event loop such as libuv, without changing the computation.
Thanks to the separation of effectful operations from their
implementation, effect handlers enable new approaches to
modular programming. Effect handlers are a generalisation
of exception handlers, where, in addition to the effect being
handled, the handler is provided with the delimited contin-
uation [14] of the perform site. This continuation may be
used to resume the suspended computation later. This en-
ables non-local control-flow mechanisms such as resumable
exceptions, lightweight threads, coroutines, generators and
asynchronous I/O to be composably expressed.
One of the primary motivations to extend OCaml with

effect handlers is to natively support asynchronous I/O in
order to express highly scalable concurrent applications such
as web servers in direct style (as opposed to using callbacks).
Many programming languages, including OCaml, require
non-local changes to source code in order to support asyn-
chronous I/O, often leading to a dichotomy between syn-
chronous and asynchronous code [10]. For asynchronous
I/O, OCaml developers typically use libraries such as Lwt [53]
and Async [40, ğ18], where asynchronous functions are rep-
resented as monadic computations. In these libraries, while
asynchronous functions can call synchronous functions di-
rectly, the converse is not true. In particular, any function
that calls an asynchronous function will also have to be
marked as asynchronous. As a result, large parts of the appli-
cations using these libraries end up being in monadic form.
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Effect handlers allow the programmer to implement computational effects, such as custom error handling,
various forms of lightweight concurrency, and dynamic binding, inside the programming language. We
introduce cpp-effects, a C++ library for effect handlers with a typed high-level, object-oriented interface.
We demonstrate that effect handlers can be successfully applied in imperative systems programming languages
with manual memory management. Through a collection of examples, we explore how to program effectively
with effect handlers in C++, discuss the intricacies and challenges of the implementation, and show that despite
its limitations, cpp-effects performance is competitive and in some cases even outperforms state-of-the-art
approaches such as C++20 coroutines and the libmprompt library for multiprompt delimited control.
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1 INTRODUCTION
Effect handlers [Plotkin and Pretnar 2009, 2013] are an expressive control mechanism that allows
programmers to define and manage bespoke, fit-for-purpose computational effects. Typical ex-
amples include customised error handling, mutable state, input/output, lightweight concurrency,
dependency injection, and dynamic binding. Handlers also allow for transparent composition of
effects Ð both with each other and with native effects built into the language. From an engineering
methodology perspective, the advantage of handlers is the explicit separation of effect definitions
from their programming interface, a collection of commands (also known elsewhere in the literature
as operations). This makes the abstraction ergonomic, as it does not require any exotic conventions
to use an effect, in contrast to programming with monads, for instance. It also makes the job of
instrumenting existing code possible without extensive rewriting.
One application of effect handlers which is emerging as increasingly important is lightweight

cooperative concurrency, that is, concurrency in which all tasks are realised on a single OS thread,
without pre-emption. Effect handlers can lead to streamlined and efficient implementations of
lightweight (green) threads with different kinds of schedulers, fibers, generators, async/await,
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WebAssembly (Wasm) is a low-level portable code format offering near native performance. It is intended
as a compilation target for a wide variety of source languages. However, Wasm provides no direct support
for non-local control flow features such as async/await, generators/iterators, lightweight threads, first-class
continuations, etc. This means that compilers for source languages with such features must ceremoniously
transform whole source programs in order to target Wasm.

We presentWasmFX, an extension to Wasm which provides a universal target for non-local control features
via effect handlers, enabling compilers to translate such features directly into Wasm. Our extension is minimal
and only adds three main instructions for creating, suspending, and resuming continuations. Moreover, our
primitive instructions are type-safe providing typed continuations which are well-aligned with the design
principles of Wasm whose stacks are typed. We present a formal specification of WasmFX and show that the
extension is sound. We have implemented WasmFX as an extension to the Wasm reference interpreter and
also built a prototype WasmFX extension for Wasmtime, a production-grade Wasm engine, piggybacking on
Wasmtime’s existing fibers API. The preliminary performance results for our prototype are encouraging, and
we outline future plans to realise a native implementation.
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1 INTRODUCTION
WebAssembly (also known as Wasm) [Haas et al. 2017; Rossberg 2019, 2023] is a low-level virtual
machine designed to be safe and fast, while being both language- and platform-independent. A
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Effect handlers provide a structured means for implementing user-defined, composable, and customisable
computational effects, ranging from exceptions to generators to lightweight threads. We introduce libseff,
a novel effect handlers library for C, based on coroutines. Whereas prior effect handler libraries for C are
intended primarily as compilation targets, libseff is intended to be used directly from C programs. As such,
the design of libseff parts ways from traditional effect handler implementations, both by using mutable
coroutines as the main representation of pending computations, and by avoiding closures as handlers by way
of reified effects. We show that the performance of libseff is competitive across a range of platforms and
benchmarks.
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1 Introduction
Effect handler oriented programming languages and libraries empower programmers to define
custom effectful operations whose semantics is specified later by a suitable effect handler [24].
The power of handlers lies in their ability to support fine-grained customisation (a given effectful
computation can be handled by different handlers that give it different behaviours, such as imple-
menting a different scheduling strategy), and their composability (handlers can be composed to
allow using multiple different effects in the same program).

A central aspect of effect handlers is that when handling an operation they are provided with an
explicit representation of the continuation of the code that performed the operation (that is the
rest of the computation from the operation invocation up to the point at which the handler was
installed). A continuation is a first-class object that can be resumed immediately, aborted entirely,
or delayed for later execution. In this sense, effect handlers can be seen as providing a form of
first-class resumable exceptions, and allow for the implementation of sophisticated forms of control
flow, such as async/await, exceptions, generators and varied forms of lightweight concurrency,
entirely as user-defined libraries.
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Growing interest in industry
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Python probabilistic programming
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GitHub hosts hundreds of millions of code repositories written in hundreds of different programming languages.
In addition to its hosting services, GitHub provides data and insights into code, such as vulnerability analysis
and code navigation, with which users can improve and understand their software development process.
GitHub has built Semantic, a program analysis tool capable of parsing and extracting detailed information
from source code. The development of Semantic has relied extensively on the functional programming
literature; this paper describes how connections to academic research inspired and informed the development
of an industrial-scale program analysis toolkit.

CCS Concepts: · Software and its engineering → General programming languages; · Social and
professional topics→ History of programming languages.
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1 INTRODUCTION
GitHub is a service that provides storage for repositories of source code tracked with the Git
distributed version control system. It is the largest such service in the world, supporting over 65
million users and storing petabytes of source code across hundreds of millions of repositories. The
size of the corpus of code on GitHub means that analyzing that code is a source of significant
business value. While GitHub boasts a large engineering staff, we report the experience of Semantic
Code, a team formed in 2015 to create tools that analyze the corpus of open-source and proprietary
code stored on GitHub. One of these tools is a framework called Semantic, a program analysis tool
that supports diffing, code navigation, and abstract interpretation. Semantic is implemented in the
functional programming language Haskell and is available as open-source software.1

In order to extract up-to-date data from a user’s codebase, code analysis services such as Seman-
tic must operate whenever a user uploads a code change to GitHub. This means that code analysis
must be able to handle tens of thousands of requests per minute, with thousands of simultaneous
connections, while producing useful data in a timely fashion. Such systems present significant
1https://github.com/github/semantic
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“An example of the utility and flexibility of algebraic effects is an effect we developed

to extract telemetry data from our production Haskell systems.”

“ In a production context, we wanted these data to be uploaded to an aggregator; in a

development context we wanted to see them reported on the command-line; and when

running automated tests, we wanted to discard them entirely”
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Effect handler research languages

Eff https://www.eff-lang.org/

Koka https://koka-lang.github.io

Links https://links-lang.org/
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1. Algebraic effects

1.1. Introduction
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A question

How do effects arise?

i.e., how do we “construct” them in a programming language?
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Algebraic effects

An algebraic effect is given by

➤ operations (i.e. effect constructors) with signatures

➤ a set of axioms

Example: one boolean location

signatures: putt : 1, putf : 1, get : 2

➤ Read putb(m) as “put b, and continue with m”.

➤ Read get(m, n) as “get the boolean value, continue withm if true, and n otherwise”.

axioms: the set of axioms

➤ get(m,m) = m

➤ get(get(m,m′), get(n, n′)) = get(m, n′)

➤ putb(putb′(m)) = putb′(m)

➤ get(putt(m), putf (n)) = get(m, n)

➤ putb(get(mt ,mf )) = putb(mb)
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Interpretation of one boolean location

Interpretation Tb(X ) = B → (X × B)

JcK = λs. (c, s)

Jget(m, n)K = λs. if s then JmKs else JnKs
Jputb(m)K = λs. JmKb

Sound and complete with respect to the equations:

m = n ⇐⇒ JmK = JnK

Example: putt(get(mt ,mf )) = putt(mt)

➤ Jputt(get(mt ,mf ))K = λs. Jget(mt ,mf )Kt = λs. (λs. if s then JmtKs else Jmf Ks)t
= λs. if t then JmtKt else Jmf Kt = λs. JmtKt

➤ Jputt(mt)K = λs. JmtKt

Exercise 1: Show other equations hold.

Exercise 2: Show that the get-get equation is redundant.
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Interpretation of one boolean location (2)

A different interpretation: Tlog (X ) = B → (X × List B)

JcK = λs. (c, [s])

Jget(m, n)K = λs. if s then JmKs else JnKs
Jputb(m)K = λs. let (n, s) ⇐ JmKb in (n, b :: s)

Complete with respect to the equations:

m = n ⇐= JmK = JnK

But not sound:
Jputb(putb′(m))K ̸= Jputb′(m)K

➤ the left hand side logs twice, while the right hand side only logs once
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Interpretation of one boolean location (3)

Another interpretation: Tdiscard(X ) = B → X

JcK = λs. c

Jget(m, n)K = λs. if s then JmKs else JnKs
Jputb(m)K = λs. JmKb

Sound with respect to the equations:

m = n =⇒ JmK = JnK

But incomplete:
Jputb(m)K = JmK but putb(m) ̸= m
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Another example: exception

Example: exception

signatures: raisee : 0 (e ∈ E )

axioms: none

interpretation: Texc(X ) = X + E

JcK = inl(c)

JraiseeK = inr(e)

15



Yet another example: non-determinisim

Example: non-determinisim

signatures: or : 2

➤ Read or(m, n) as “non-deterministically runs m or n”.

axioms:

➤ or(m, or(n, p)) = or(or(m, n), p) (associativity)

➤ or(m, n) = or(n,m) (commutativity)

➤ or(m,m) = m (absorption)

interpretation: Tndet(X ) = F+(X ) collection of non-empty finite subsets of X

JcK = {c}
Jor(m, n)K = JmK ∪ JnK
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Remarks

An algebraic effect is given by

➤ operations (i.e. effect constructors) with signatures

➤ a set of axioms

Is a set of axioms the right set of axioms?

➤ An equational theory is equationally inconsistent if it proves x = y .

➤ An equational theory is Hilbert-Post complete if adding an unprovable equation

makes it equationally inconsistent.

Different interpretations are useful in practice, so sometimes people use effects without

equations.
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Algebraicity

From the literature:

Moggi’s Monads As Notions of Computation
Algebraic Effects

Prospectus and Exercises

Introduction
Equational theories

Algebraic operations

Fix a finitary equational axiomatic theory Ax. Then for any set
X and operation symbol op : n we have the function:

TAx(X )n opFAx(X)������! TAx(X )

Further for any function f : X ! TAx(Y ), f † is a homomorphism:

TAx(X )n
opFAx(X)- TAx(X )

=

TAx(Y )n

(f †)n

?

opFAx(Y )

- TAx(Y )

f †

?

We call such a polymorphic family of functions
TAx(X )n 'X��! TAx(X ) algebraic.

Plotkin Lecture 1: Algebraic Effects I
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Programming counterpart of being algebraic

Evaluation context E ::= □ | E n | (λx . m) E

For any operation op : n, we have:

E [op(m1, . . . ,mn)] = op(E [m1], . . . ,E [mn])

Example

➤ raisee() n = raisee()

➤ (λx . m) raisee() = raisee()

➤ or(m, n) p = or(m p, n p)

➤ (λx . p) or(m, n) = or((λx . p) m, (λx . p) n)

19
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➤ or(m, n) p = or(m p, n p)

➤ (λx . p) or(m, n) = or((λx . p) m, (λx . p) n)
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Summary of algebraic effects

An algebraic effect is given by

➤ operations (i.e. effect constructors) with signatures

➤ a set of axioms

Algebracity

➤ operations commute with evaluation contexts

Next:

➤ computational trees and free monads

➤ generic effects
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1. Algebraic effects

1.2. Computational trees and free monad
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An example program

Recall the boolean location with signature

putt : 1, putf : 1, get : 2

Consider a term toggle = get(putf (t), putt(f ))

Question: What is this term doing?
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Computational trees

v

Values

op

Operations

➤ A computational tree is a tree whose leaves are values, and internal nodes are

operations.
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Computational trees

toggle = get(putf (t), putt(f ))

get

putf putt

t f

t f
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Computational trees

get

or putt

t f

raise
t f

Question: what is this program doing?

get(or(raise, t), putt(f ))
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Computational trees

A computational tree is a tree whose leaves are values, and internal nodes are

operations.

Computational trees as free monads

data Free f a = Pure a | Free (f (Free f a))

➤ Pure a: Represents a pure value, effectively the return of a monad

➤ Free (f (Free f a)): Represents an operation that produces another Free f a

computation.

The bind performs substitution at the leaves

return c >>= r = r c

op(m1, ..., mn) >>= r = op (m1 >>=r, ..., mn >== r)
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