
Algebraic E!ects and Handlers

Ningning Xie

University of Toronto

OPLSS 2025

50

Summary

An algebraic e!ect is given by

✁ operations (i.e. e!ect constructors) with signatures

✁ a set of axioms

E!ect handlers

✁ give interpretations to operations

✁ e!ects and handlers can be nested and composed

51

2. E!ect handlers

2.2. E!ect type system

52

E!ect type system

expressions

e := c | x | ωx . e | e1 e2 | if e1 then e2 else e3 | op e | handle h e

v := c | ωx . e

h := {op →↑ ωx k . e1, return →↑ ωx . e2}

e!ect labels ε example: state has get and put

e!ects ϑ = ↓↔ | ↓ε | ϑ↔

e!ects as: ✁ sets (E!) ✁ simple rows (Links) ✁ scoped rows (Koka)

types A := Int | Bool | A ↑ ϑ B

✁ Read A ↑ ϑ B as: a function that, when given A, may perform e!ects in ϑ, and

returns B

53

E!ect type system

expressions

e := c | x | ωx . e | e1 e2 | if e1 then e2 else e3 | op e | handle h e

v := c | ωx . e

h := {op →↑ ωx k . e1, return →↑ ωx . e2}

e!ect labels ε example: state has get and put

e!ects ϑ = ↓↔ | ↓ε | ϑ↔

e!ects as: ✁ sets (E!) ✁ simple rows (Links) ✁ scoped rows (Koka)

types A := Int | Bool | A ↑ ϑ B

✁ Read A ↑ ϑ B as: a function that, when given A, may perform e!ects in ϑ, and

returns B

53

E!ect type system

expressions

e := c | x | ωx . e | e1 e2 | if e1 then e2 else e3 | op e | handle h e

v := c | ωx . e

h := {op →↑ ωx k . e1, return →↑ ωx . e2}

e!ect labels ε example: state has get and put

e!ects ϑ = ↓↔ | ↓ε | ϑ↔

e!ects as: ✁ sets (E!) ✁ simple rows (Links) ✁ scoped rows (Koka)

types A := Int | Bool | A ↑ ϑ B

✁ Read A ↑ ϑ B as: a function that, when given A, may perform e!ects in ϑ, and

returns B

53

E!ect type system

expressions

e := c | x | ωx . e | e1 e2 | if e1 then e2 else e3 | op e | handle h e

v := c | ωx . e

h := {op →↑ ωx k . e1, return →↑ ωx . e2}

e!ect labels ε example: state has get and put

e!ects ϑ = ↓↔ | ↓ε | ϑ↔

e!ects as: ✁ sets (E!) ✁ simple rows (Links) ✁ scoped rows (Koka)

types A := Int | Bool | A ↑ ϑ B

✁ Read A ↑ ϑ B as: a function that, when given A, may perform e!ects in ϑ, and

returns B
53

E!ect type system

” ↗ e : A | ϑ

” ↗ True : Bool | ϑ
→ t

” ↗ False : Bool | ϑ
→ f

x : A ↘ ”

” ↗ x : A | ϑ
→ var

”, x : A ↗ e : B | ϑ

” ↗ ωx . e : A ↑ ϑ B | ϑ
→ lam

” ↗ e1 : A ↑ ϑ B | ϑ ” ↗ e2 : A | ϑ

” ↗ e1 e2 : B | ϑ

app

” ↗ e1 : Bool | ϑ ” ↗ e2 : A | ϑ ” ↗ e3 : A | ϑ

” ↗ if e1 then e2 else e3 : A | ϑ

if

54

E!ect type system

” ↗ e : A | ϑ

op : A ↭ B ↘ #(ε) ” ↗ e : A | ↓ε | ϑ↔
” ↗ op e : B | ↓ε | ϑ↔

op

” ↗ e : C | ↓ε | ϑ↔ ” ↗ h : C ≃ ↓ε | ϑ↔D
” ↗ handle h e : D | ϑ

handle

” ↗ h : C ≃ ↓ε | ϑ↔D

”, x : C ↗ e : D | ϑ opi : Ai ↭ Bi ↘ #(ε) ”, xi : Ai , ki : Bi ↑ ϑD ↗ ei : D | ϑ

” ↗ {return →↑ ωx . e, opi →↑ ωxi ki . ei} : C ≃ ↓ε | ϑ↔D
hnd

55

E!ect type system

” ↗ e : A | ϑ

op : A ↭ B ↘ #(ε) ” ↗ e : A | ↓ε | ϑ↔
” ↗ op e : B | ↓ε | ϑ↔

op

” ↗ e : C | ↓ε | ϑ↔ ” ↗ h : C ≃ ↓ε | ϑ↔D
” ↗ handle h e : D | ϑ

handle

” ↗ h : C ≃ ↓ε | ϑ↔D

”, x : C ↗ e : D | ϑ opi : Ai ↭ Bi ↘ #(ε) ”, xi : Ai , ki : Bi ↑ ϑD ↗ ei : D | ϑ

” ↗ {return →↑ ωx . e, opi →↑ ωxi ki . ei} : C ≃ ↓ε | ϑ↔D
hnd

55

Type safety

Theorem (Type Preservation)
If ” ↗ e : A | ϑ, and e ⇐↑ e →, then ” ↗ e → : A | ϑ.

Corollary (Progress)
If • ↗ e : A | ↓↔, then either e is a value, or there exists e → such that e ⇐↑ e →.

56

Type safety

Theorem (Type Preservation)
If ” ↗ e : A | ϑ, and e ⇐↑ e →, then ” ↗ e → : A | ϑ.

Theorem (Progress)
If • ↗ e : A | ϑ, then either e is a value, or there exists e → such that e ⇐↑ e →.

Corollary (Progress)
If • ↗ e : A | ↓↔, then either e is a value, or there exists e → such that e ⇐↑ e →.

56

Type safety

Theorem (Type Preservation)
If ” ↗ e : A | ϑ, and e ⇐↑ e →, then ” ↗ e → : A | ϑ.

Theorem (Progress)
If • ↗ e : A | ϑ, then either e is a value, or there exists e → such that e ⇐↑ e →.

Question: what if e performs an operation in ϑ?

Corollary (Progress)
If • ↗ e : A | ↓↔, then either e is a value, or there exists e → such that e ⇐↑ e →.

56

Type safety

Theorem (Type Preservation)
If ” ↗ e : A | ϑ, and e ⇐↑ e →, then ” ↗ e → : A | ϑ.

Theorem (Progress with e!ects)
If • ↗ e : A | ϑ, then either e is a value, or there exists e → such that e ⇐↑ e →, or

e = E [op v], where op ↘ ϑ and op#E .

Corollary (Progress)
If • ↗ e : A | ↓↔, then either e is a value, or there exists e → such that e ⇐↑ e →.

56

Type safety

Theorem (Type Preservation)
If ” ↗ e : A | ϑ, and e ⇐↑ e →, then ” ↗ e → : A | ϑ.

Theorem (Progress with e!ects)
If • ↗ e : A | ϑ, then either e is a value, or there exists e → such that e ⇐↑ e →, or

e = E [op v], where op ↘ ϑ and op#E .

Corollary (Progress)
If • ↗ e : A | ↓↔, then either e is a value, or there exists e → such that e ⇐↑ e →.

56

Algebraic e!ects vs monads

Monad Transformers and Modular Algebraic E!ects
What Binds Them Together

Tom Schrijvers
KU Leuven
Belgium

Maciej Piróg
University of Wroc!aw

Poland

Nicolas Wu
Imperial College London

United Kingdom

Mauro Jaskelio"
CIFASIS-CONICET

Universidad Nacional de
Rosario

Argentina

Abstract
For over two decades, monad transformers have been the
main modular approach for expressing purely functional
side-e"ects in Haskell. Yet, in recent years algebraic e"ects
have emerged as an alternative whose popularity is growing.
While the two approaches have been well-studied, there

is still confusion about their relative merits and expressive-
ness, especially when it comes to their comparative modu-
larity. This paper clari#es the connection between the two
approaches—some of which is folklore—and spells out con-
sequences that we believe should be better known.

We characterise a class of algebraic e"ects that is modular,
and show how these correspond to a speci#c class of monad
transformers. In particular, we show that our modular al-
gebraic e"ects gives rise to monad transformers. Moreover,
every monad transformer for algebraic operations gives rise
to a modular e"ect handler.

CCS Concepts • Software and its engineering→ Func-
tional languages; Control structures; Coroutines; • Theory
of computation→ Categorical semantics.

Keywords Handlers, E"ects, Monads, Transformers

ACM Reference Format:
Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelio".
2019. Monad Transformers and Modular Algebraic E"ects: What
Binds Them Together. In Proceedings of the 12th ACM SIGPLAN
International Haskell Symposium (Haskell ’19), August 22–23, 2019,
Berlin, Germany. ACM, New York, NY, USA, 16 pages. h!ps://doi.
org/10.1145/3331545.3342595

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro#t or commercial advantage and that copies bear
this notice and the full citation on the #rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci#c permission and/or a fee. Request
permissions from permissions@acm.org.
Haskell ’19, August 22–23, 2019, Berlin, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6813-1/19/08. . . $15.00
h!ps://doi.org/10.1145/3331545.3342595

1 Introduction
For decades monads [29, 42] have dominated the scene of
pure functional programming with e"ects, and the recent
popularisation of algebraic e"ects & handlers [3, 7, 21, 23,
35] promises to change the landscape. However, with rapid
change also comes confusion, and practitioners have been
left uncertain about the advantages and limitations of the
two competing approaches. This paper aims at clarifying the
essential di"erences and similarities between them.
Working with combinations of multiple di"erent e"ects

demands a modular approach, where each e"ect is given
semantics separately. This allows for the construction of
complex custom e"ects from o"-the-shelf building blocks.

A popular approach to achieving modularity for monads is
with monad transformers [27]. Monad transformers extend
an arbitrary monad with a new e"ect while at the same time
ensuring that original e"ects are available. The desired com-
bination of monads is achieved by stacking several monad
transformers in a particular order.
In the algebraic e"ects approach modularity is conceptu-

ally achieved in two stages. First, the syntax of all operations
involved in the e"ect are de#ned. Then a program is incre-
mentally interpreted by several handlers, which in turn give
the syntax of di"erent e"ects a semantics.

Since each handler only knows about the part of the syntax
of the e"ect it is handling, a modular approach to algebraic
e"ects must provide a way of leaving unknown syntax unin-
terpreted and to be dealt with later by other handlers.
There are several properties that can be studied when

comparing approaches, such as expressivity, ease of use,
modularity, boilerplate automation, and e$ciency. This pa-
per focuses only on the essential expressivity of transformers
and algebraic e"ects, leaving other important properties out
of scope. To study expressivity, we formulate a minimal im-
plementation of both approaches and abstract over all other
aspects. In this way, we aim to explain the main ideas in an
approachable manner and provide general insights that can
be applied to everyone’s favourite Haskell library. Much of
what we present is folklore among experts, but the tale has
yet to be collected in a single, consistent place for the wider
Haskell community to enjoy, as we have done here.
After an introduction to monad transformers (Section 2)

that #xes notation, the contributions of this paper are:

98

Haskell’19

57

3. Implementing e!ect handlers

Expensive runtime operations

Two potentially expensive runtime operations:

handle h E [op v] ⇐↑ f v (ωx . handle h E [x]) where op →↑ f ↘ h, op#E

allChoices = {
choose →↑ ωx k . k True ++ k False,

return →↑ ωx . [x] }

handle allChoices 42 ⇐↑ [42]

handle allChoices (toss ()) ⇐↑ [Heads,Tails]

58

Expensive runtime operations

Two potentially expensive runtime operations:

handle h E [op v] ⇐↑ f v

capturing︷ ︸︸ ︷
(ωx . handle h E [x]) where op →↑ f ↘ h,

searching︷ ︸︸ ︷
op#E

allChoices = {
choose →↑ ωx k . k True ++ k False,

return →↑ ωx . [x] }

handle allChoices 42 ⇐↑ [42]

handle allChoices (toss ()) ⇐↑ [Heads,Tails]

58

Expensive runtime operations

Two potentially expensive runtime operations:

handle h E [op v] ⇐↑ f v

capturing︷ ︸︸ ︷
(ωx . handle h E [x]) where op →↑ f ↘ h,

searching︷ ︸︸ ︷
op#E

allChoices = {
choose →↑ ωx k . k True ++ k False,

return →↑ ωx . [x] }

handle allChoices 42 ⇐↑ [42]

handle allChoices (toss ()) ⇐↑ [Heads,Tails]

58

Compile e!ect handlers e”ciently

✁ Continuation-passing style Links [Hillerström et al.(2017)]

Closure allocation cost

✁ Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]

E!cient one-shot resumption

✁ Capability-passing style E”ekt [Schuster et al.(2020), Brachthäuser et al.(2020)]

E!cient lexically scoped handlers

✁ Rewriting E” [Karachalias et al.(2021)]

Source-to-source transformations

✁ Evidence-passing semantics Koka [Xie et al.(2020), Xie and Leijen(2021)]

E!cient tail-resumptive operations

59

Compile e!ect handlers e”ciently

✁ Continuation-passing style Links [Hillerström et al.(2017)]

Closure allocation cost

✁ Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]

E!cient one-shot resumption

✁ Capability-passing style E”ekt [Schuster et al.(2020), Brachthäuser et al.(2020)]

E!cient lexically scoped handlers

✁ Rewriting E” [Karachalias et al.(2021)]

Source-to-source transformations

✁ Evidence-passing semantics Koka [Xie et al.(2020), Xie and Leijen(2021)]

E!cient tail-resumptive operations

59

Segmented stacks

handle

handle

op v

handle

handle

op v

f v k

handle

handle

•

60

Segmented stacks

handle

handle

op v

f v k

handle

handle

•

60

Segmented stacks

handle op →↑ f ↘ h

handle op#h

op v

f v k

handle

handle

•

60

Segmented stacks

handle

handle

op v

f v k

handle

handle

•

60

Segmented stacks

handle

handle

op v

f v k f = ωx k . x + (k 0)

handle

handle

•

60

Segmented stacks

v +

handle

handle

0

61

Compile e!ect handlers e”ciently

✁ Continuation-passing style Links [Hillerström et al.(2017)]

Closure allocation cost

✁ Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]

E!cient one-shot resumption

✁ Capability-passing style E”ekt [Schuster et al.(2020), Brachthäuser et al.(2020)]

E!cient lexically scoped handlers

✁ Rewriting E” [Karachalias et al.(2021)]

Source-to-source transformations

✁ Evidence-passing semantics Koka [Xie et al.(2020), Xie and Leijen(2021)]

E!cient tail-resumptive operations

62

Compile e!ect handlers e”ciently

✁ Continuation-passing style Links [Hillerström et al.(2017)]

Closure allocation cost

✁ Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]

E!cient one-shot resumption

✁ Capability-passing style E”ekt [Schuster et al.(2020), Brachthäuser et al.(2020)]

E!cient lexically scoped handlers

✁ Rewriting E” [Karachalias et al.(2021)]

Source-to-source transformations

✁ Evidence-passing semantics Koka [Xie et al.(2020), Xie and Leijen(2021)]

E!cient tail-resumptive operations

62

Compile e!ect handlers e”ciently

✁ Continuation-passing style Links [Hillerström et al.(2017)]

Closure allocation cost

✁ Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]

E!cient one-shot resumption

✁ Capability-passing style E”ekt [Schuster et al.(2020), Brachthäuser et al.(2020)]

E!cient lexically scoped handlers

✁ Rewriting E” [Karachalias et al.(2021)]

Source-to-source transformations

✁ Evidence-passing semantics Koka [Xie et al.(2020), Xie and Leijen(2021)]

E!cient tail-resumptive operations

62

Compile e!ect handlers e”ciently

✁ Continuation-passing style Links [Hillerström et al.(2017)]

Closure allocation cost

✁ Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]

E!cient one-shot resumption

✁ Capability-passing style E”ekt [Schuster et al.(2020), Brachthäuser et al.(2020)]

E!cient lexically scoped handlers

✁ Rewriting E” [Karachalias et al.(2021)]

Source-to-source transformations

✁ Evidence-passing semantics Koka [Xie et al.(2020), Xie and Leijen(2021)]

E!cient tail-resumptive operations

62

Evidence-passing semantics

✁ Pass handlers down to the

operation call sites

✁ Evaluate tail-resumptive

operations in-place

✁ A Haskell library

Two Haskell libraries

✁ Specify the handler when

performing

99

E!ect Handlers, Evidently

NINGNING XIE,Microsoft Research, USA
JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany
DANIEL HILLERSTRÖM, The University of Edinburgh, United Kingdom
PHILIPP SCHUSTER, University of Tübingen, Germany
DAAN LEIJEN,Microsoft Research, USA

Algebraic e!ect handlers are a powerful way to incorporate e!ects in a programming language. Sometimes
perhaps even too powerful. In this article we de"ne a restriction of general e!ect handlers with scoped
resumptions. We argue one can still express all important e!ects, while improving reasoning about e!ect
handlers. Using the newly gained guarantees, we de"ne a sound and coherent evidence translation for e!ect
handlers, which directly passes the handlers as evidence to each operation. We prove full soundness and
coherence of the translation into plain lambda calculus. The evidence in turn enables e#cient implementations
of e!ect operations; in particular, we showwe can execute tail-resumptive operations in place (without needing
to capture the evaluation context), and how we can replace the runtime search for a handler by indexing with
a constant o!set.

CCS Concepts: • Software and its engineering → Control structures; Polymorphism; • Theory of
computation → Type theory.

Additional Key Words and Phrases: Algebraic E!ects, Handlers, Evidence Passing Translation

ACM Reference Format:
Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and Daan Leijen.
2020. E!ect Handlers, Evidently. Proc. ACM Program. Lang. 4, ICFP, Article 99 (August 2020), 29 pages.
https://doi.org/10.1145/3408981

1 INTRODUCTION
Algebraic e!ects [Plotkin and Power 2003] and the extension with handlers [Plotkin and Pret-
nar 2013], are a powerful way to incorporate e!ects in programming languages. Algebraic e!ect
handlers can express any free monad in a concise and composable way, and can be used to express
complex control-$ow, like exceptions, asynchronous I/O, local state, backtracking, and many more.
Even though there are many language implementations of algebraic e!ects, like Koka [Lei-

jen 2014], E! [Pretnar 2015], Frank [Lindley et al. 2017], Links [Lindley and Cheney 2012], and
Multicore OCaml [Dolan et al. 2015], the implementations may not be as e#cient as one might
hope. Generally, handling e!ect operations requires a linear search at runtime to the innermost
handler. This is a consequence of the core operational rule for algebraic e!ect handlers:

handlem h E[perform op v] ↑→ f v k

Authors’ addresses: Ningning Xie, Microsoft Research, USA, nnxie@cs.hku.hk; Jonathan Immanuel Brachthäuser, University
of Tübingen, Germany, jonathan.brachthaeuser@uni-tuebingen.de; Daniel Hillerström, The University of Edinburgh,
United Kingdom, daniel.hillerstrom@ed.ac.uk; Philipp Schuster, University of Tübingen, Germany, philipp.schuster@uni-
tuebingen.de; Daan Leijen, Microsoft Research, USA, daan@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/8-ART99
https://doi.org/10.1145/3408981

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 99. Publication date: August 2020.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

ICFP’20

Haskell’20

ICFP’21

OOPSLA’22

63

Evidence-passing semantics

✁ Pass handlers down to the

operation call sites

✁ Evaluate tail-resumptive

operations in-place

✁ A Haskell library

Two Haskell libraries

✁ Specify the handler when

performing

99

E!ect Handlers, Evidently

NINGNING XIE,Microsoft Research, USA
JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany
DANIEL HILLERSTRÖM, The University of Edinburgh, United Kingdom
PHILIPP SCHUSTER, University of Tübingen, Germany
DAAN LEIJEN,Microsoft Research, USA

Algebraic e!ect handlers are a powerful way to incorporate e!ects in a programming language. Sometimes
perhaps even too powerful. In this article we de"ne a restriction of general e!ect handlers with scoped
resumptions. We argue one can still express all important e!ects, while improving reasoning about e!ect
handlers. Using the newly gained guarantees, we de"ne a sound and coherent evidence translation for e!ect
handlers, which directly passes the handlers as evidence to each operation. We prove full soundness and
coherence of the translation into plain lambda calculus. The evidence in turn enables e#cient implementations
of e!ect operations; in particular, we showwe can execute tail-resumptive operations in place (without needing
to capture the evaluation context), and how we can replace the runtime search for a handler by indexing with
a constant o!set.

CCS Concepts: • Software and its engineering → Control structures; Polymorphism; • Theory of
computation → Type theory.

Additional Key Words and Phrases: Algebraic E!ects, Handlers, Evidence Passing Translation

ACM Reference Format:
Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and Daan Leijen.
2020. E!ect Handlers, Evidently. Proc. ACM Program. Lang. 4, ICFP, Article 99 (August 2020), 29 pages.
https://doi.org/10.1145/3408981

1 INTRODUCTION
Algebraic e!ects [Plotkin and Power 2003] and the extension with handlers [Plotkin and Pret-
nar 2013], are a powerful way to incorporate e!ects in programming languages. Algebraic e!ect
handlers can express any free monad in a concise and composable way, and can be used to express
complex control-$ow, like exceptions, asynchronous I/O, local state, backtracking, and many more.
Even though there are many language implementations of algebraic e!ects, like Koka [Lei-

jen 2014], E! [Pretnar 2015], Frank [Lindley et al. 2017], Links [Lindley and Cheney 2012], and
Multicore OCaml [Dolan et al. 2015], the implementations may not be as e#cient as one might
hope. Generally, handling e!ect operations requires a linear search at runtime to the innermost
handler. This is a consequence of the core operational rule for algebraic e!ect handlers:

handlem h E[perform op v] ↑→ f v k

Authors’ addresses: Ningning Xie, Microsoft Research, USA, nnxie@cs.hku.hk; Jonathan Immanuel Brachthäuser, University
of Tübingen, Germany, jonathan.brachthaeuser@uni-tuebingen.de; Daniel Hillerström, The University of Edinburgh,
United Kingdom, daniel.hillerstrom@ed.ac.uk; Philipp Schuster, University of Tübingen, Germany, philipp.schuster@uni-
tuebingen.de; Daan Leijen, Microsoft Research, USA, daan@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/8-ART99
https://doi.org/10.1145/3408981

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 99. Publication date: August 2020.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

ICFP’20

E!ect Handlers in Haskell, Evidently
Ningning Xie

Microsoft Research
USA

nnxie@cs.hku.hk

Daan Leijen
Microsoft Research

USA
daan@microso!.com

Abstract
Algebraic e!ect handlers o!er an alternative to monads to
incorporate e!ects in Haskell. In recent work Xie et al. show
how to give semantics to e!ect handlers in terms of plain
polymorphic lambda calculus through evidence translation.
Besides giving precise semantics, this translation also al-
lows for potentially more e"cient implementations. Here
we present the #rst implementation of this technique as a
library for e!ect handlers in Haskell. We show how the de-
sign naturally leads to a concise e!ect interface and how
evidence translation enables evaluating tail resumptive oper-
ations in-place. We give detailed benchmark results where
our library performs well with respect to other approaches.

CCS Concepts: • Software and its engineering → Con-
trol structures; Polymorphism.

Keywords: Algebraic E!ects, Handlers, Evidence Passing
Translation

ACM Reference Format:
Ningning Xie and Daan Leijen. 2020. E!ect Handlers in Haskell,
Evidently. In Proceedings of the 13th ACM SIGPLAN International
Haskell Symposium (Haskell ’20), August 27, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 14 pages. h"ps://doi.org/10.1145/
3406088.3409022

1 Introduction
Algebraic e!ects handlers [Plotkin and Power 2003; Plotkin
and Pretnar 2013] provide an alternative to monads to in-
corporate e!ectful programs in Haskell [Kammar et al. 2013;
Kiselyov and Ishii 2015;Wu and Schrijvers 2015a]. E!ect han-
dlers can express any free monad in a concise and compos-
able way, and can be used to express complex control-$ow,
like exceptions, asynchronous I/O, local state, backtracking,
and much more.

In recent work Xie et al. [2020] show how to give seman-
tics to e!ect handlers in terms of plain polymorphic lambda

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro#t or commercial advantage and that copies
bear this notice and the full citation on the #rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Haskell ’20, August 27, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8050-8/20/08.
h"ps://doi.org/10.1145/3406088.3409022

calculus through evidence translation. Besides giving pre-
cise semantics, this translation also allows for potentially
more e"cient implementations – a handler is now passed
as evidence to the call site of an operation where it can be
invoked immediately without needing to search for it. Here
we present the #rst implementation of this technique as a
library for e!ect handlers in Haskell. In particular,

• We give an implementation of e!ect handlers based
on the target language Fv in [Xie et al. 2020]. This
implements e!ect handler semantics faithfully and in
particular enforces the scoped resumptions restriction
(although at runtime only).

• The library interface (Figure 1) is concise and arguably
simpler than other library interfaces for e!ect handlers.
In particular, e!ects are de#ned as a regular data type
with a #eld for each operation. For example,

data Reader a e ans
= Reader{ ask :: Op () a e ans }

declares a Reader e!ect with one operation ask from
() to a (in e!ect context e with answer type ans).
Other libraries typically require GADT’s [Kiselyov and
Ishii 2015], data types à la carte [Swierstra 2008; Wu
et al. 2014], or Template Haskell [Kammar et al. 2013]
to create new e!ects. Being e!ect handlers, there are
also of course the usual advantages with respect to a
monadic interface: e!ects can be composed freely (as
e!ects always form a freemonad), and there is no need
to lift operations into a particular monad (as they are
all part of the single e!ect monad).

• Since evidence of each handler is passed explicitly,
we can directly invoke operations on a handler. For
example, the function greet:

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()

return (!hello ! ++ s)

performs an ask operation. Here the quali#ed type
Reader String :? e ensures the reader e!ect is in the
e!ect context e and its dictionary allows perform to
directly select the actual Reader handler from the e!ect
context evidence (passed in the e!ect monad Eff e)
without needing to search for the correct handler. It
then uses ask to select the operation #eld directly from
the handler data type and invokes it. This is quite dif-
ferent from most e!ect libraries that typically propa-
gate the operations through a handler stack. Moreover,

95

Haskell’20

ICFP’21

OOPSLA’22

63

Evidence-passing semantics

✁ Pass handlers down to the

operation call sites

✁ Evaluate tail-resumptive

operations in-place

✁ A Haskell library

Two Haskell libraries

✁ Specify the handler when

performing

99

E!ect Handlers, Evidently

NINGNING XIE,Microsoft Research, USA
JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany
DANIEL HILLERSTRÖM, The University of Edinburgh, United Kingdom
PHILIPP SCHUSTER, University of Tübingen, Germany
DAAN LEIJEN,Microsoft Research, USA

Algebraic e!ect handlers are a powerful way to incorporate e!ects in a programming language. Sometimes
perhaps even too powerful. In this article we de"ne a restriction of general e!ect handlers with scoped
resumptions. We argue one can still express all important e!ects, while improving reasoning about e!ect
handlers. Using the newly gained guarantees, we de"ne a sound and coherent evidence translation for e!ect
handlers, which directly passes the handlers as evidence to each operation. We prove full soundness and
coherence of the translation into plain lambda calculus. The evidence in turn enables e#cient implementations
of e!ect operations; in particular, we showwe can execute tail-resumptive operations in place (without needing
to capture the evaluation context), and how we can replace the runtime search for a handler by indexing with
a constant o!set.

CCS Concepts: • Software and its engineering → Control structures; Polymorphism; • Theory of
computation → Type theory.

Additional Key Words and Phrases: Algebraic E!ects, Handlers, Evidence Passing Translation

ACM Reference Format:
Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and Daan Leijen.
2020. E!ect Handlers, Evidently. Proc. ACM Program. Lang. 4, ICFP, Article 99 (August 2020), 29 pages.
https://doi.org/10.1145/3408981

1 INTRODUCTION
Algebraic e!ects [Plotkin and Power 2003] and the extension with handlers [Plotkin and Pret-
nar 2013], are a powerful way to incorporate e!ects in programming languages. Algebraic e!ect
handlers can express any free monad in a concise and composable way, and can be used to express
complex control-$ow, like exceptions, asynchronous I/O, local state, backtracking, and many more.
Even though there are many language implementations of algebraic e!ects, like Koka [Lei-

jen 2014], E! [Pretnar 2015], Frank [Lindley et al. 2017], Links [Lindley and Cheney 2012], and
Multicore OCaml [Dolan et al. 2015], the implementations may not be as e#cient as one might
hope. Generally, handling e!ect operations requires a linear search at runtime to the innermost
handler. This is a consequence of the core operational rule for algebraic e!ect handlers:

handlem h E[perform op v] ↑→ f v k

Authors’ addresses: Ningning Xie, Microsoft Research, USA, nnxie@cs.hku.hk; Jonathan Immanuel Brachthäuser, University
of Tübingen, Germany, jonathan.brachthaeuser@uni-tuebingen.de; Daniel Hillerström, The University of Edinburgh,
United Kingdom, daniel.hillerstrom@ed.ac.uk; Philipp Schuster, University of Tübingen, Germany, philipp.schuster@uni-
tuebingen.de; Daan Leijen, Microsoft Research, USA, daan@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/8-ART99
https://doi.org/10.1145/3408981

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 99. Publication date: August 2020.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

ICFP’20

E!ect Handlers in Haskell, Evidently
Ningning Xie

Microsoft Research
USA

nnxie@cs.hku.hk

Daan Leijen
Microsoft Research

USA
daan@microso!.com

Abstract
Algebraic e!ect handlers o!er an alternative to monads to
incorporate e!ects in Haskell. In recent work Xie et al. show
how to give semantics to e!ect handlers in terms of plain
polymorphic lambda calculus through evidence translation.
Besides giving precise semantics, this translation also al-
lows for potentially more e"cient implementations. Here
we present the #rst implementation of this technique as a
library for e!ect handlers in Haskell. We show how the de-
sign naturally leads to a concise e!ect interface and how
evidence translation enables evaluating tail resumptive oper-
ations in-place. We give detailed benchmark results where
our library performs well with respect to other approaches.

CCS Concepts: • Software and its engineering → Con-
trol structures; Polymorphism.

Keywords: Algebraic E!ects, Handlers, Evidence Passing
Translation

ACM Reference Format:
Ningning Xie and Daan Leijen. 2020. E!ect Handlers in Haskell,
Evidently. In Proceedings of the 13th ACM SIGPLAN International
Haskell Symposium (Haskell ’20), August 27, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 14 pages. h"ps://doi.org/10.1145/
3406088.3409022

1 Introduction
Algebraic e!ects handlers [Plotkin and Power 2003; Plotkin
and Pretnar 2013] provide an alternative to monads to in-
corporate e!ectful programs in Haskell [Kammar et al. 2013;
Kiselyov and Ishii 2015;Wu and Schrijvers 2015a]. E!ect han-
dlers can express any free monad in a concise and compos-
able way, and can be used to express complex control-$ow,
like exceptions, asynchronous I/O, local state, backtracking,
and much more.

In recent work Xie et al. [2020] show how to give seman-
tics to e!ect handlers in terms of plain polymorphic lambda

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro#t or commercial advantage and that copies
bear this notice and the full citation on the #rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Haskell ’20, August 27, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8050-8/20/08.
h"ps://doi.org/10.1145/3406088.3409022

calculus through evidence translation. Besides giving pre-
cise semantics, this translation also allows for potentially
more e"cient implementations – a handler is now passed
as evidence to the call site of an operation where it can be
invoked immediately without needing to search for it. Here
we present the #rst implementation of this technique as a
library for e!ect handlers in Haskell. In particular,

• We give an implementation of e!ect handlers based
on the target language Fv in [Xie et al. 2020]. This
implements e!ect handler semantics faithfully and in
particular enforces the scoped resumptions restriction
(although at runtime only).

• The library interface (Figure 1) is concise and arguably
simpler than other library interfaces for e!ect handlers.
In particular, e!ects are de#ned as a regular data type
with a #eld for each operation. For example,

data Reader a e ans
= Reader{ ask :: Op () a e ans }

declares a Reader e!ect with one operation ask from
() to a (in e!ect context e with answer type ans).
Other libraries typically require GADT’s [Kiselyov and
Ishii 2015], data types à la carte [Swierstra 2008; Wu
et al. 2014], or Template Haskell [Kammar et al. 2013]
to create new e!ects. Being e!ect handlers, there are
also of course the usual advantages with respect to a
monadic interface: e!ects can be composed freely (as
e!ects always form a freemonad), and there is no need
to lift operations into a particular monad (as they are
all part of the single e!ect monad).

• Since evidence of each handler is passed explicitly,
we can directly invoke operations on a handler. For
example, the function greet:

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()

return (!hello ! ++ s)

performs an ask operation. Here the quali#ed type
Reader String :? e ensures the reader e!ect is in the
e!ect context e and its dictionary allows perform to
directly select the actual Reader handler from the e!ect
context evidence (passed in the e!ect monad Eff e)
without needing to search for the correct handler. It
then uses ask to select the operation #eld directly from
the handler data type and invokes it. This is quite dif-
ferent from most e!ect libraries that typically propa-
gate the operations through a handler stack. Moreover,

95

Haskell’20

71

Generalized Evidence Passing for E!ect Handlers
E!icient Compilation of E!ect Handlers to C

NINGNING XIE, University of Hong Kong, China
DAAN LEIJEN,Microsoft Research, USA

This paper studies compilation techniques for algebraic e!ect handlers. In particular, we present a sequence
of re"nements of algebraic e!ects, going via multi-prompt delimited control, generalized evidence passing,
yield bubbling, and "nally a monadic translation into plain lambda calculus which can be compiled e#ciently
to many target platforms. Along the way we explore various interesting points in the design space. We
provide two implementations of our techniques, one as a library in Haskell, and one as a C backend for
the Koka programming language. We show that our techniques are e!ective, by comparing against three
other best-in-class implementations of e!ect handlers: multi-core OCaml, the Ev.E! Haskell library, and
the libhandler C library. We hope this work can serve as a basis for future designs and implementations of
algebraic e!ects.

CCS Concepts: • Software and its engineering → Control structures; Polymorphism; • Theory of
computation → Type theory.

Additional Key Words and Phrases: Algebraic E!ects, Handlers, Evidence Passing

ACM Reference Format:
Ningning Xie and Daan Leijen. 2021. Generalized Evidence Passing for E!ect Handlers: E#cient Compilation
of E!ect Handlers to C. Proc. ACM Program. Lang. 5, ICFP, Article 71 (August 2021), 30 pages. https://doi.org/
10.1145/3473576

1 INTRODUCTION
Algebraic e!ects and handlers [Plotkin and Power 2003; Plotkin and Pretnar 2013] provide a
powerful and $exible way to add structured control-$ow abstraction to programming languages.
Unfortunately, it is not straightforward to compile e!ect handlers into e#cient code: e!ect opera-
tions are generally able to capture- and resume a delimited continuation, which usually requires
special runtime support to do e#ciently. For example, the e!ect handler implementation in multi-
core OCaml [Dolan et al. 2017; Sivaramakrishnan et al. 2021] relies on a runtime system that
uses segmented stacks which can be captured e#ciently [Farvardin and Reppy 2020]. Then, a
natural question that arises is whether it is possible to compile e!ect handlers e#ciently where the
target platform does not directly support delimited continuations, for example, when compiling to
C/LLVM, WASM [Haas et al. 2017], JavaScript, Java VM, .NET, etc.
In this paper we give a formalized translation and evaluation semantics from a typed e!ect

handler calculus into a plain typed lambda calculus as a sequence of re"nements:
(1) First we show how e!ect handler semantics can be expressed using standard multi-prompt

delimited control semantics [Forster et al. 2019; Gunter et al. 1995] (Section 2.4).

Authors’ addresses: Ningning Xie, University of Hong Kong, China, xnning@hku.hk; Daan Leijen, Microsoft Research, USA,
daan@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
2475-1421/2021/8-ART71
https://doi.org/10.1145/3473576

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

ICFP’21

OOPSLA’22

63

Evidence-passing semantics

✁ Pass handlers down to the

operation call sites

✁ Evaluate tail-resumptive

operations in-place

✁ A Haskell library

Two Haskell libraries

✁ Specify the handler when

performing

99

E!ect Handlers, Evidently

NINGNING XIE,Microsoft Research, USA
JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany
DANIEL HILLERSTRÖM, The University of Edinburgh, United Kingdom
PHILIPP SCHUSTER, University of Tübingen, Germany
DAAN LEIJEN,Microsoft Research, USA

Algebraic e!ect handlers are a powerful way to incorporate e!ects in a programming language. Sometimes
perhaps even too powerful. In this article we de"ne a restriction of general e!ect handlers with scoped
resumptions. We argue one can still express all important e!ects, while improving reasoning about e!ect
handlers. Using the newly gained guarantees, we de"ne a sound and coherent evidence translation for e!ect
handlers, which directly passes the handlers as evidence to each operation. We prove full soundness and
coherence of the translation into plain lambda calculus. The evidence in turn enables e#cient implementations
of e!ect operations; in particular, we showwe can execute tail-resumptive operations in place (without needing
to capture the evaluation context), and how we can replace the runtime search for a handler by indexing with
a constant o!set.

CCS Concepts: • Software and its engineering → Control structures; Polymorphism; • Theory of
computation → Type theory.

Additional Key Words and Phrases: Algebraic E!ects, Handlers, Evidence Passing Translation

ACM Reference Format:
Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and Daan Leijen.
2020. E!ect Handlers, Evidently. Proc. ACM Program. Lang. 4, ICFP, Article 99 (August 2020), 29 pages.
https://doi.org/10.1145/3408981

1 INTRODUCTION
Algebraic e!ects [Plotkin and Power 2003] and the extension with handlers [Plotkin and Pret-
nar 2013], are a powerful way to incorporate e!ects in programming languages. Algebraic e!ect
handlers can express any free monad in a concise and composable way, and can be used to express
complex control-$ow, like exceptions, asynchronous I/O, local state, backtracking, and many more.
Even though there are many language implementations of algebraic e!ects, like Koka [Lei-

jen 2014], E! [Pretnar 2015], Frank [Lindley et al. 2017], Links [Lindley and Cheney 2012], and
Multicore OCaml [Dolan et al. 2015], the implementations may not be as e#cient as one might
hope. Generally, handling e!ect operations requires a linear search at runtime to the innermost
handler. This is a consequence of the core operational rule for algebraic e!ect handlers:

handlem h E[perform op v] ↑→ f v k

Authors’ addresses: Ningning Xie, Microsoft Research, USA, nnxie@cs.hku.hk; Jonathan Immanuel Brachthäuser, University
of Tübingen, Germany, jonathan.brachthaeuser@uni-tuebingen.de; Daniel Hillerström, The University of Edinburgh,
United Kingdom, daniel.hillerstrom@ed.ac.uk; Philipp Schuster, University of Tübingen, Germany, philipp.schuster@uni-
tuebingen.de; Daan Leijen, Microsoft Research, USA, daan@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/8-ART99
https://doi.org/10.1145/3408981

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 99. Publication date: August 2020.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

ICFP’20

E!ect Handlers in Haskell, Evidently
Ningning Xie

Microsoft Research
USA

nnxie@cs.hku.hk

Daan Leijen
Microsoft Research

USA
daan@microso!.com

Abstract
Algebraic e!ect handlers o!er an alternative to monads to
incorporate e!ects in Haskell. In recent work Xie et al. show
how to give semantics to e!ect handlers in terms of plain
polymorphic lambda calculus through evidence translation.
Besides giving precise semantics, this translation also al-
lows for potentially more e"cient implementations. Here
we present the #rst implementation of this technique as a
library for e!ect handlers in Haskell. We show how the de-
sign naturally leads to a concise e!ect interface and how
evidence translation enables evaluating tail resumptive oper-
ations in-place. We give detailed benchmark results where
our library performs well with respect to other approaches.

CCS Concepts: • Software and its engineering → Con-
trol structures; Polymorphism.

Keywords: Algebraic E!ects, Handlers, Evidence Passing
Translation

ACM Reference Format:
Ningning Xie and Daan Leijen. 2020. E!ect Handlers in Haskell,
Evidently. In Proceedings of the 13th ACM SIGPLAN International
Haskell Symposium (Haskell ’20), August 27, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 14 pages. h"ps://doi.org/10.1145/
3406088.3409022

1 Introduction
Algebraic e!ects handlers [Plotkin and Power 2003; Plotkin
and Pretnar 2013] provide an alternative to monads to in-
corporate e!ectful programs in Haskell [Kammar et al. 2013;
Kiselyov and Ishii 2015;Wu and Schrijvers 2015a]. E!ect han-
dlers can express any free monad in a concise and compos-
able way, and can be used to express complex control-$ow,
like exceptions, asynchronous I/O, local state, backtracking,
and much more.

In recent work Xie et al. [2020] show how to give seman-
tics to e!ect handlers in terms of plain polymorphic lambda

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro#t or commercial advantage and that copies
bear this notice and the full citation on the #rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Haskell ’20, August 27, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8050-8/20/08.
h"ps://doi.org/10.1145/3406088.3409022

calculus through evidence translation. Besides giving pre-
cise semantics, this translation also allows for potentially
more e"cient implementations – a handler is now passed
as evidence to the call site of an operation where it can be
invoked immediately without needing to search for it. Here
we present the #rst implementation of this technique as a
library for e!ect handlers in Haskell. In particular,

• We give an implementation of e!ect handlers based
on the target language Fv in [Xie et al. 2020]. This
implements e!ect handler semantics faithfully and in
particular enforces the scoped resumptions restriction
(although at runtime only).

• The library interface (Figure 1) is concise and arguably
simpler than other library interfaces for e!ect handlers.
In particular, e!ects are de#ned as a regular data type
with a #eld for each operation. For example,

data Reader a e ans
= Reader{ ask :: Op () a e ans }

declares a Reader e!ect with one operation ask from
() to a (in e!ect context e with answer type ans).
Other libraries typically require GADT’s [Kiselyov and
Ishii 2015], data types à la carte [Swierstra 2008; Wu
et al. 2014], or Template Haskell [Kammar et al. 2013]
to create new e!ects. Being e!ect handlers, there are
also of course the usual advantages with respect to a
monadic interface: e!ects can be composed freely (as
e!ects always form a freemonad), and there is no need
to lift operations into a particular monad (as they are
all part of the single e!ect monad).

• Since evidence of each handler is passed explicitly,
we can directly invoke operations on a handler. For
example, the function greet:

greet :: (Reader String :? e) ⇒ Eff e String
greet = do s <- perform ask ()

return (!hello ! ++ s)

performs an ask operation. Here the quali#ed type
Reader String :? e ensures the reader e!ect is in the
e!ect context e and its dictionary allows perform to
directly select the actual Reader handler from the e!ect
context evidence (passed in the e!ect monad Eff e)
without needing to search for the correct handler. It
then uses ask to select the operation #eld directly from
the handler data type and invokes it. This is quite dif-
ferent from most e!ect libraries that typically propa-
gate the operations through a handler stack. Moreover,

95

Haskell’20

71

Generalized Evidence Passing for E!ect Handlers
E!icient Compilation of E!ect Handlers to C

NINGNING XIE, University of Hong Kong, China
DAAN LEIJEN,Microsoft Research, USA

This paper studies compilation techniques for algebraic e!ect handlers. In particular, we present a sequence
of re"nements of algebraic e!ects, going via multi-prompt delimited control, generalized evidence passing,
yield bubbling, and "nally a monadic translation into plain lambda calculus which can be compiled e#ciently
to many target platforms. Along the way we explore various interesting points in the design space. We
provide two implementations of our techniques, one as a library in Haskell, and one as a C backend for
the Koka programming language. We show that our techniques are e!ective, by comparing against three
other best-in-class implementations of e!ect handlers: multi-core OCaml, the Ev.E! Haskell library, and
the libhandler C library. We hope this work can serve as a basis for future designs and implementations of
algebraic e!ects.

CCS Concepts: • Software and its engineering → Control structures; Polymorphism; • Theory of
computation → Type theory.

Additional Key Words and Phrases: Algebraic E!ects, Handlers, Evidence Passing

ACM Reference Format:
Ningning Xie and Daan Leijen. 2021. Generalized Evidence Passing for E!ect Handlers: E#cient Compilation
of E!ect Handlers to C. Proc. ACM Program. Lang. 5, ICFP, Article 71 (August 2021), 30 pages. https://doi.org/
10.1145/3473576

1 INTRODUCTION
Algebraic e!ects and handlers [Plotkin and Power 2003; Plotkin and Pretnar 2013] provide a
powerful and $exible way to add structured control-$ow abstraction to programming languages.
Unfortunately, it is not straightforward to compile e!ect handlers into e#cient code: e!ect opera-
tions are generally able to capture- and resume a delimited continuation, which usually requires
special runtime support to do e#ciently. For example, the e!ect handler implementation in multi-
core OCaml [Dolan et al. 2017; Sivaramakrishnan et al. 2021] relies on a runtime system that
uses segmented stacks which can be captured e#ciently [Farvardin and Reppy 2020]. Then, a
natural question that arises is whether it is possible to compile e!ect handlers e#ciently where the
target platform does not directly support delimited continuations, for example, when compiling to
C/LLVM, WASM [Haas et al. 2017], JavaScript, Java VM, .NET, etc.
In this paper we give a formalized translation and evaluation semantics from a typed e!ect

handler calculus into a plain typed lambda calculus as a sequence of re"nements:
(1) First we show how e!ect handler semantics can be expressed using standard multi-prompt

delimited control semantics [Forster et al. 2019; Gunter et al. 1995] (Section 2.4).

Authors’ addresses: Ningning Xie, University of Hong Kong, China, xnning@hku.hk; Daan Leijen, Microsoft Research, USA,
daan@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
2475-1421/2021/8-ART71
https://doi.org/10.1145/3473576

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

ICFP’21

126

First-Class Names for E!ect Handlers
NINGNING XIE, University of Cambridge, UK
YOUYOU CONG, Tokyo Institute of Technology, Japan
KAZUKI IKEMORI, Tokyo Institute of Technology, Japan
DAAN LEIJEN,Microsoft Research, USA

Algebraic e!ects and handlers are a promising technique for incorporating composable computational e!ects
into functional programming languages. E!ect handlers enable concisely programming with di!erent e!ects,
but they do not o!er a convenient way to program with di!erent instances of the same e!ect. As a solution to
this inconvenience, previous studies have introduced named e!ect handlers, which allow the programmer to
distinguish among di!erent e!ect instances. However, existing formalizations of named handlers are both
involved and restrictive, as they employ non-standard mechanisms to prevent the escaping of handler names.

In this paper, we propose a simple and "exible design of named handlers. Speci#cally, we treat handler
names as #rst-class values, and prevent their escaping while staying within the ordinary !-calculus. Such a
design is enabled by combining named handlers with scoped e!ects, a novel variation of e!ects that maintain
a scope via rank-2 polymorphism. We formalize two combinations of named handlers and scoped e!ects,
and implement them in the Koka programming language. We also present practical applications of named
handlers, including a neural network and a uni#cation algorithm.

CCS Concepts: • Software and its engineering → Control structures; Polymorphism; • Theory of
computation → Type theory.

Additional Key Words and Phrases: Algebraic E!ects, E!ect Handlers, Scoping

ACM Reference Format:
Ningning Xie, Youyou Cong, Kazuki Ikemori, and Daan Leijen. 2022. First-Class Names for E!ect Handlers.
Proc. ACM Program. Lang. 6, OOPSLA2, Article 126 (October 2022), 30 pages. https://doi.org/10.1145/3563289

1 INTRODUCTION
“What’s in a name? That which we call a rose by any other name would smell as sweet.”

– William Shakespeare
The question of how to represent computational e!ects has been studied for decades in the

programming languages community. Algebraic e!ects and handlers [Plotkin and Power 2003; Plotkin
and Pretnar 2013] are one of the solutions to this problem. Since their introduction, e!ect handlers
have been applied to diverse domains, such as Web programming [Hillerström and Lindley 2016],
reactive programming [Bračevac et al. 2018], and probabilistic programming [Bingham et al. 2019].

A key advantage of e!ect handlers is that they can be freely composed. For example, if we have a
program that uses both mutable state and exceptions, we can simply run it under two handlers: one
for state and the other for exceptions. When an e!ectful operation is performed, it is automatically
handled by the innermost handler for that e!ect.

Authors’ addresses: Ningning Xie, University of Cambridge, Cambridge, UK, ningning.xie@cl.cam.ac.uk; Youyou Cong,
Tokyo Institute of Technology, Tokyo, Japan, cong@c.titech.ac.jp; Kazuki Ikemori, Tokyo Institute of Technology, Tokyo,
Japan, ikemori.k.aa@m.titech.ac.jp; Daan Leijen, Microsoft Research, Redmond, WA, USA, daan@microsoft.com.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/10-ART126
https://doi.org/10.1145/3563289

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 126. Publication date: October 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

OOPSLA’22

63

Compile e!ect handlers e”ciently

✁ Continuation-passing style Links [Hillerström et al.(2017)]

Closure allocation cost

✁ Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]

E!cient one-shot resumption

✁ Capability-passing style E”ekt [Schuster et al.(2020), Brachthäuser et al.(2020)]

E!cient lexically scoped handlers

✁ Rewriting E” [Karachalias et al.(2021)]

Source-to-source transformations

✁ Evidence-passing semantics Koka [Xie et al.(2020), Xie and Leijen(2021)]

E!cient tail-resumptive operations

64

E!ect handlers benchmarks suite

t

systems benchmarks

system

benchmarks/ocaml/results.csv

EffEff passingpassing

$ make bench_ocaml

https://github.com/effect-handlers/effect-handlers-bench

65

https://github.com/effect-handlers/effect-handlers-bench

Resources

- E!ect bibliography

https://github.com/yallop/effects-bibliography

- ”An introduction to algebraic e!ects and handlers” [Pretnar(2015)]

- ”E!ect-Handler Oriented Programming” [Lindley, OPLSS’22]

- ”Programming with E!ect Handlers and FBIP in Koka” [Leijen and Xie, ICFP’21

Tutorial]

- ”What is algebraic about algebraic e!ects and handlers?” [Bauer(2018)]

66

https://github.com/yallop/effects-bibliography

Andrej Bauer. 2018.

What is algebraic about algebraic e!ects and handlers?
arXiv preprint arXiv:1807.05923 (2018).

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020.

E!ects as capabilities: e!ect handlers and lightweight e!ect polymorphism.
Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–30.

Daniel Hillerström, Sam Lindley, Robert Atkey, and K. C. Sivaramakrishnan. 2017.

Continuation Passing Style for E!ect Handlers. In 2nd International

Conference on Formal Structures for Computation and Deduction (FSCD

2017), Dale Miller (Ed.), Vol. 84. Dagstuhl, Germany, 18:1–18:19.

doi:10.4230/LIPIcs.FSCD.2017.18

Georgios Karachalias, Filip Koprivec, Matija Pretnar, and Tom Schrijvers. 2021.

E”cient compilation of algebraic e!ect handlers.
Proceedings of the ACM on Programming Languages 5, OOPSLA (2021), 1–28.

66

https://doi.org/10.4230/LIPIcs.FSCD.2017.18

Matija Pretnar. 2015.

An introduction to algebraic e!ects and handlers. invited tutorial paper.
Electronic notes in theoretical computer science 319 (2015), 19–35.

Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2020.

Compiling e!ect handlers in capability-passing style.
Proceedings of the ACM on Programming Languages 4, ICFP (2020), 1–28.

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Ja!er, and

Anil Madhavapeddy. 2021.

Retrofitting e!ect handlers onto OCaml. In Proceedings of the 42nd ACM

SIGPLAN International Conference on Programming Language Design and

Implementation. 206–221.

Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp

Schuster, and Daan Leijen. 2020.

66

E!ect handlers, evidently.
Proceedings of the ACM on Programming Languages 4, ICFP (2020), 1–29.

Ningning Xie and Daan Leijen. 2021.

Generalized evidence passing for e!ect handlers: e”cient compilation of

e!ect handlers to C.
Proceedings of the ACM on Programming Languages 5, ICFP (2021), 1–30.

66

	1. Algebraic effects
	1.1. Introduction
	1.2. Computational trees and free monad
	1.3. Generic effects

	2. Effect handlers
	2.1. Introductions
	2.2. Effect type system

	3. Implementing effect handlers

