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An algebraic effect is given by

» operations (i.e. effect constructors) with signatures
> a set of axioms

Effect handlers

» give interpretations to operations
» effects and handlers can be nested and composed
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2. Effect handlers

2.2. Effect type system
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Effect type system

expressions

e:=c|x|Ax. e|e e|if e then e, else e3 | op e | handle h e

vi=c|Ax. e

h:={op — Ax k. e1, return — Ax. ex}
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Effect type system

expressions
e:=c|x|Ax. e|e e|if e then e, else e3 | op e | handle h e
vi=c|Ax. e
h:={op — Ax k. e1, return — Ax. ex}
effect labels /7 example: state has get and put
effects e¢= ()| (¢|¢)
effects as: > sets (Eff) » simple rows (Links) » scoped rows (Koka)
types A:=Int|Bool |A— ¢ B

» Read A — ¢ B as: a function that, when given A, may perform effects in ¢, and

returns B
53



Effect type system

lFe:Ale

x:Ael
T F ————— VAR
[+ True : Bool | ¢ [+ False : Bool | ¢ FEx:A|¢€
MNx:AFe:B | e le1:A—eB e lFex:A e
LAM APP
TFXx.e:A—eB| ¢ e e:B|e

ke : Bool | ¢ lFe:A|e NFes:A|e

IF
Eif e; then ex else e3: A | ¢
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Effect type system

op: A~ BeX(() FEe: Al (¢]e)
FFope:B | ({]e€)

OoP

[e:C|(fle) THh:C= (£|e)D
Nthandle he:D | €

HANDLE
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Effect type system

op: A~ BeX(() FEe: Al (¢]e)
FFope:B | ({]e€)

OoP

[e:C|(fle) THh:C= (£|e)D
Nthandle he:D | €

HANDLE

[TEh:C=((]e)D]

MNx:Cke:D|e opi:Ai~BeX(l) T,xi:Aki:Bi—eDFe:D|e¢
I+ {return — Ax. e, opj — Ax; ki. ¢} : C= ({|¢)D

HND
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Type safety

Theorem (Type Preservation)
IfTFe:Ale, ande — €, thenT e : A|e.
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Type safety

Theorem (Type Preservation)
IfTHe:Ale ande — €, thenT He' : A|e.

Theorem (Progress)
Ifel-e: A| e, then either e is a value, or there exists € such that e — ¢’.
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Type safety

Theorem (Type Preservation)
IfTHe:Ale, ande — €, thenT FHeé :Ale.

Theorem (Progress)
Ifet-e: A | e, then either e is a value, or there exists €' such that e — ¢’.

Question: what if e performs an operation in €?
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Type safety

Theorem (Type Preservation)
IfT-e:Ale ande — €, thenT e 1 Ale.

Theorem (Progress with effects)
Ifet=e: A | ¢, then either e is a value, or there exists € such that e — €, or

e = E[op v], where op € € and op#E.
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Type safety

Theorem (Type Preservation)
IfT-e:Ale ande — €, thenT e 1 Ale.

Theorem (Progress with effects)
Ifet=e: A | ¢, then either e is a value, or there exists € such that e — €, or

e = E[op v], where op € € and op#E.

Corollary (Progress)
Ifet=e: A| (), then either e is a value, or there exists €' such that e — €'.
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Algebraic effects vs monads

Haskell'19

Monad Transformers and Modular Algebraic Effects
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Abstract
For over two decades, monad transformers have been the
main modular approach for ing purely functional
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1 Introduction

For decades monads [29, 42] have dominated the scene of
pure 1 ing with effects, and the recent

side-effects in Haskell. Yet, in recent years algebraic effects
have emerged as an alternative whose popularity is growing.

While the two approaches have been well-studied, there
ill confusion about their relative merits and expressive-
especially when it comes to their comparative modu-
larity. This paper clarifies the connection between the two
approaches—some of which is folklore—and spells out con-
sequences that we believe should be better known.

We characterise a class of algebraic effects that is modular,
and show how these correspond to a specific class of monad
transformers. In particular, we show that our modular al-
gebraic effects gives rise to monad transformers. Moreover,
every monad transformer for algebraic operations gives rise
to a modular effect handler.

is

ness,

CCS Concepts - Software and its engineering — Func-
tional languages; Control structures; Coroutines; « Theory
of computation — Categorical semantics.

Keywords Handlers, Effects, Monads, Transformers
ACM Reference Format:
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popularisation of algebraic effects & handlers [3, 7, 21, 23,
35] promises to change the landscape. However, with rapid
change also comes confusion, and practitioners have been
left uncertain about the advantages and limitations of the
two competing approaches. This paper aims at clarifying the
essential differences and similarities between them.

‘Working with combinations of multiple different effects
demands a modular approach, where each effect is given
semantics separately. This allows for the construction of
complex custom effects from off-the-shelf building blocks.

A popular approach to achieving modularity for monads is
with monad [27]. Monad t extend
an arbitrary monad with a new effect while at the same time
ensuring that original effects are available. The desired com-
bination of monads is achieved by stacking several monad
transformers in a particular order.

In the algebraic effects approach modularity is conceptu-
ally achieved in two stages. First, the syntax of all operations
involved in the effect are defined. Then a program is incre-
mentally interpreted by several handlers, which in turn give
the syntax of different effects a semantics.

Since each handler only knows about the part of the syntax
of the effect it is handling, a modular approach to algebraic
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3. Implementing effect handlers




Expensive runtime operations

handle h E[op v] — f v (Ax. handle h E[x]) where op — f € h, op#E
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Expensive runtime operations

Two potentially expensive runtime operations:

capturing searching

—
handle h E[op v] — f v (Ax. handle h E[x]) where op — f € h, op#E

58



Expensive runtime operations

Two potentially expensive runtime operations:

capturing searching

—
handle h E[op v] — f v (Ax. handle h E[x]) where op — f € h, op#E

allChoices = {
choose — \x k. k True ++ k False,
return — Ax. [x] }

handle allChoices 42 — [42]
handle allChoices (toss ()) — [Heads, Tails]
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Compile effect handlers efficiently

» Continuation-passing style Links [Hillerstrom et al.(2017)]

Closure allocation cost
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Efficient one-shot resumption
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Segmented stacks
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Segmented stacks
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Segmented stacks
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Segmented stacks
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Segmented stacks

)
f = Ax k. x + (k 0)
(_handle ]
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(_handle ]
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)
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Segmented stacks
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Compile effect handlers efficiently

» Continuation-passing style Links [Hillerstrom et al.(2017)]
Closure allocation cost
» Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]

Efficient one-shot resumption
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Evidence-passing semantics

» Pass handlers down to the
operation call sites

» Evaluate tail-resumptive
operations in-place

ICFP'20
Effect Handlers, Evidently
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Algebraic effect handlers are a powerful way to incorporate effects in a programming language. Sometimes
perhaps even too powerful. In this article we define a restriction of general effect handlers with scoped
resumptions. We argue one can still express all important effects, while improving reasoning about effect
handlers. Using the newly gained guarantees, we define a sound and coherent evidence translation for effect
handlers, which directly passes the handlers as evidence to each operation. We prove full soundness and
coherence of the translation into plain lambda calculus. The evidence in turn enables efficient implementations
of effect operations; in particular, we show we can execute tail-resumptive operations in place (without needing
to capture the evaluation context), and how we can replace the runtime search for a handler by indexing with
a constant offset.

CCS Concepts: » Software and its engineering — Control structures; Polymorphism; « Theory of
computation — Type theory.

Additional Key Words and Phrases: Algebraic Effects, Handlers, Evidence Passing Translation
ACM Reference Format:
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2020. Effect Handlers, Evidently. Proc. ACM Program. Lang. 4, ICFP, Article 99 (August 2020), 29 pages.

https://doi.org/10.1145/3408981

1 INTRODUCTION
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Evidence-passing semantics

> Pass handlers down to the
operation call sites
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Effect Handlers in Haskell, Evidently

Haskell’20
Ningning Xie
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Abstract

Algebraic effect handlers offer an alternative to monads to
incorporate effects in Haskell. In recent work Xie et al. show
how to give semantics to effect handlers in terms of plain
polymorphic lambda calculus through evidence translation.
Besides giving precise semantics, this translation also al-
lows for potentially more efficient implementations. Here
‘we present the first implementation of this technique as a
library for effect handlers in Haskell. We show how the de-
sign naturally leads to a concise effect interface and how
evidence translation enables evaluating tail resumptive oper-
ations in-place. We give detailed benchmark results where
our library performs well with respect to other approaches.
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calculus through evidence translation. Besides giving
cise semantics, this translation also allows for potent
more efficient implementations — a handler is now
as evidence to the call site of an operation where it c:
invoked immediately without needing to search for it.
we present the first implementation of this technique
library for effect handlers in Haskell. In particular,

 We give an implementation of effect handlers t
on the target language F¥ in [Xie et al. 2020]
implements effect handler semantics faithfully a
particular enforces the scoped resumptions restri
(although at runtime only).

The library interface (Figure 1) is concise and arg
simpler than other library interfaces for effect han
In particular, effects are defined as a regular data
with a field for each operation. For example,

data Reader a e ans

= Reader{ ask :: Op () a e ans }
declares a Reader effect with one operation ask
O to a (in effect context e with answer type
Other libraries typically require GADT’s Ei?él) o
Ishii 2015), data types a la carte [Swiers 008
et al. 2014], or Template Haskell [Kammar et al. :
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This paper studies compilation techniques for algebraic effect handlers. In particular, we p
of refinements of algebraic effects, going via multi-prompt delimited control, generalizec
yield bubbling, and finally a monadic translation into plain lambda calculus which can be c
to many target platforms. Along the way we explore various interesting points in the
provide two impl; ions of our techni one as a library in Haskell, and one a

the Koka programming language. We show that our techniques are effective, by compa
other best-in-class implementations of effect handlers: multi-core OCaml, the Ev.Eff H:
the libhandler C library. We hope this work can serve as a basis for future designs and in
algebraic effects.
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Compile effect handlers efficiently

» Continuation-passing style Links [Hillerstrom et al.(2017)]
Closure allocation cost

» Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]
Efficient one-shot resumption

» Capability-passing style Effekt [Schuster et al.(2020), Brachthiuser et al.(2020)]
Efficient lexically scoped handlers

» Rewriting Eff [Karachalias et al.(2021)]
Source-to-source transformations

» Evidence-passing semantics Koka [Xie et al.(2020), Xie and Leijen(2021)]

Efficient tail-resumptive operations
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Effect handlers benchmarks suite

effect-handlers /

- O effect-handlers-bench

<> Code () lIssues 16 I Pullrequests 3 ~ ( Actions [ Projects 1 @ Security [~ Insights

® ¥ %
Benchmark repository of polyglot effect handler examples

&8 MIT license
¢ 20stars ¥ 8forks © Swatching ¥ 4Branches © 0Tags 4~ Activity ) Custom properties

@ Public repository

¥ main ~ ¥ 4Branches ©0Tags ¥ © Q Gotofile t  Gotofile +  Addfile ~ l
& phischu Add the Effekt language (#52) @ v 7monthsago @ O
githubjworkflows Add the Effekt language (#52) 7 months ago
artifacts Adds eff artifact (#21) 2 years ago
benchmarks Add the Effekt language (#52) 7 montl

https://github.com/effect-handlers/effect-handlers-bench
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