Algebraic Effects and Handlers

Ningning Xie

University of Toronto
OPLSS 2025

50

An algebraic effect is given by

» operations (i.e. effect constructors) with signatures
> a set of axioms

Effect handlers

» give interpretations to operations
» effects and handlers can be nested and composed

51

2. Effect handlers

2.2. Effect type system

52

Effect type system

expressions

e:=c|x|Ax. e|e e|if e then e, else e3 | op e | handle h e

vi=c|Ax. e

h:={op — Ax k. e1, return — Ax. ex}

53

Effect type system

expressions

e:=c|x|Ax. e|e e|if e then e, else e3 | op e | handle h e
vi=c|Ax. e

h:={op — Ax k. e1, return — Ax. ex}

effect labels /7 example: state has get and put

53

Effect type system

expressions

e:=c|x|Ax. e|e e|if e then e, else e3 | op e | handle h e
vi=c|Ax. e

h:={op — Ax k. e1, return — Ax. ex}

effect labels /7 example: state has get and put

effects e¢= ()| (¢|¢)

effects as: > sets (Eff) » simple rows (Links) » scoped rows (Koka)

53

Effect type system

expressions
e:=c|x|Ax. e|e e|if e then e, else e3 | op e | handle h e
vi=c|Ax. e
h:={op — Ax k. e1, return — Ax. ex}
effect labels /7 example: state has get and put
effects e¢= ()| (¢|¢)
effects as: > sets (Eff) » simple rows (Links) » scoped rows (Koka)
types A:=Int|Bool |A— ¢ B

» Read A — ¢ B as: a function that, when given A, may perform effects in ¢, and

returns B
53

Effect type system

lFe:Ale

x:Ael
T F ————— VAR
[+ True : Bool | ¢ [+ False : Bool | ¢ FEx:A|¢€
MNx:AFe:B | e le1:A—eB e lFex:A e
LAM APP
TFXx.e:A—eB| ¢ e e:B|e

ke : Bool | ¢ lFe:A|e NFes:A|e

IF
Eif e; then ex else e3: A | ¢

54

Effect type system

op: A~ BeX(() FEe: Al (¢]e)
FFope:B | ({]e€)

OoP

[e:C|(fle) THh:C= (£|e)D
Nthandle he:D | €

HANDLE

55

Effect type system

op: A~ BeX(() FEe: Al (¢]e)
FFope:B | ({]e€)

OoP

[e:C|(fle) THh:C= (£|e)D
Nthandle he:D | €

HANDLE

[TEh:C=((]e)D]

MNx:Cke:D|e opi:Ai~BeX(l) T,xi:Aki:Bi—eDFe:D|e¢
I+ {return — Ax. e, opj — Ax; ki. ¢} : C= ({|¢)D

HND

55

Type safety

Theorem (Type Preservation)
IfTFe:Ale, ande — €, thenT e : A|e.

56

Type safety

Theorem (Type Preservation)
IfTHe:Ale ande — €, thenT He' : A|e.

Theorem (Progress)
Ifel-e: A| e, then either e is a value, or there exists € such that e — ¢’.

56

Type safety

Theorem (Type Preservation)
IfTHe:Ale, ande — €, thenT FHeé :Ale.

Theorem (Progress)
Ifet-e: A | e, then either e is a value, or there exists €' such that e — ¢’.

Question: what if e performs an operation in €?

56

Type safety

Theorem (Type Preservation)
IfT-e:Ale ande — €, thenT e 1 Ale.

Theorem (Progress with effects)
Ifet=e: A | ¢, then either e is a value, or there exists € such that e — €, or

e = E[op v], where op € € and op#E.

56

Type safety

Theorem (Type Preservation)
IfT-e:Ale ande — €, thenT e 1 Ale.

Theorem (Progress with effects)
Ifet=e: A | ¢, then either e is a value, or there exists € such that e — €, or

e = E[op v], where op € € and op#E.

Corollary (Progress)
Ifet=e: A| (), then either e is a value, or there exists €' such that e — €'.

56

Algebraic effects vs monads

Haskell'19

Monad Transformers and Modular Algebraic Effects
What Binds Them Together

Tom Schrijvers Maciej Pirog
KU Leuven University of Wroctaw
Belgium Poland
Abstract
For over two decades, monad transformers have been the
main modular approach for ing purely functional

Nicolas Wu Mauro Jaskelioff
Imperial College London CIFASIS-CONICET
United Kingdom Universidad Nacional de
Rosario
Argentina

1 Introduction

For decades monads [29, 42] have dominated the scene of
pure 1 ing with effects, and the recent

side-effects in Haskell. Yet, in recent years algebraic effects
have emerged as an alternative whose popularity is growing.

While the two approaches have been well-studied, there
ill confusion about their relative merits and expressive-
especially when it comes to their comparative modu-
larity. This paper clarifies the connection between the two
approaches—some of which is folklore—and spells out con-
sequences that we believe should be better known.

We characterise a class of algebraic effects that is modular,
and show how these correspond to a specific class of monad
transformers. In particular, we show that our modular al-
gebraic effects gives rise to monad transformers. Moreover,
every monad transformer for algebraic operations gives rise
to a modular effect handler.

is

ness,

CCS Concepts - Software and its engineering — Func-
tional languages; Control structures; Coroutines; « Theory
of computation — Categorical semantics.

Keywords Handlers, Effects, Monads, Transformers
ACM Reference Format:

Tom Schrijvers, Maciej Pirs

5010 Manad Trancfarmare

. Nicolas Wu, and Mauro Jaskelioff.
A Mad, Aloehraiec Fffarte: What

popularisation of algebraic effects & handlers [3, 7, 21, 23,
35] promises to change the landscape. However, with rapid
change also comes confusion, and practitioners have been
left uncertain about the advantages and limitations of the
two competing approaches. This paper aims at clarifying the
essential differences and similarities between them.

‘Working with combinations of multiple different effects
demands a modular approach, where each effect is given
semantics separately. This allows for the construction of
complex custom effects from off-the-shelf building blocks.

A popular approach to achieving modularity for monads is
with monad [27]. Monad t extend
an arbitrary monad with a new effect while at the same time
ensuring that original effects are available. The desired com-
bination of monads is achieved by stacking several monad
transformers in a particular order.

In the algebraic effects approach modularity is conceptu-
ally achieved in two stages. First, the syntax of all operations
involved in the effect are defined. Then a program is incre-
mentally interpreted by several handlers, which in turn give
the syntax of different effects a semantics.

Since each handler only knows about the part of the syntax
of the effect it is handling, a modular approach to algebraic

57

3. Implementing effect handlers

Expensive runtime operations

handle h E[op v] — f v (Ax. handle h E[x]) where op — f € h, op#E

58

Expensive runtime operations

Two potentially expensive runtime operations:

capturing searching

—
handle h E[op v] — f v (Ax. handle h E[x]) where op — f € h, op#E

58

Expensive runtime operations

Two potentially expensive runtime operations:

capturing searching

—
handle h E[op v] — f v (Ax. handle h E[x]) where op — f € h, op#E

allChoices = {
choose — \x k. k True ++ k False,
return — Ax. [x] }

handle allChoices 42 — [42]
handle allChoices (toss ()) — [Heads, Tails]

58

Compile effect handlers efficiently

» Continuation-passing style Links [Hillerstrom et al.(2017)]

Closure allocation cost

59

Compile effect handlers efficiently

» Continuation-passing style Links [Hillerstrom et al.(2017)]
Closure allocation cost
» Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]

Efficient one-shot resumption

59

Segmented stacks

60

Segmented stacks

)
(_handle)
)
)
(__handle)
)
)

60

Segmented stacks

)
(handle) oprfeh
)
)
(handle) opih
)
)

60

Segmented stacks

C____)
fvk

(_handle

)

)
(__handle]
)
C____

60

Segmented stacks

)
f = Ax k. x + (k 0)
(_handle]
)
)
(_handle]
)
)

60

Segmented stacks

)
(_handle]
)
)
(_handle]
C____)
)

61

Compile effect handlers efficiently

» Continuation-passing style Links [Hillerstrom et al.(2017)]
Closure allocation cost
» Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]

Efficient one-shot resumption

62

Compile effect handlers efficiently

» Continuation-passing style Links [Hillerstrom et al.(2017)]
Closure allocation cost

» Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]
Efficient one-shot resumption

» Capability-passing style Effekt [Schuster et al.(2020), Brachthiuser et al.(2020)]

Efficient lexically scoped handlers

62

Compile effect handlers efficiently

» Continuation-passing style Links [Hillerstrom et al.(2017)]
Closure allocation cost

» Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]
Efficient one-shot resumption

» Capability-passing style Effekt [Schuster et al.(2020), Brachthiuser et al.(2020)]
Efficient lexically scoped handlers

» Rewriting Eff [Karachalias et al.(2021)]

Source-to-source transformations

62

Compile effect handlers efficiently

» Continuation-passing style Links [Hillerstrom et al.(2017)]
Closure allocation cost

» Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]
Efficient one-shot resumption

» Capability-passing style Effekt [Schuster et al.(2020), Brachthiuser et al.(2020)]
Efficient lexically scoped handlers

» Rewriting Eff [Karachalias et al.(2021)]
Source-to-source transformations

» Evidence-passing semantics Koka [Xie et al.(2020), Xie and Leijen(2021)]

Efficient tail-resumptive operations

62

Evidence-passing semantics

» Pass handlers down to the
operation call sites

» Evaluate tail-resumptive
operations in-place

ICFP'20
Effect Handlers, Evidently

NINGNING XIE, Microsoft Research, USA

JONATHAN IMMANUEL BRACHTHAUSER, University of Tiibingen, Germany
DANIEL HILLERSTROM, The University of Edinburgh, United Kingdom

PHILIPP SCHUSTER, University of Tiibingen, Germany

DAAN LEIJEN, Microsoft Research, USA

Algebraic effect handlers are a powerful way to incorporate effects in a programming language. Sometimes
perhaps even too powerful. In this article we define a restriction of general effect handlers with scoped
resumptions. We argue one can still express all important effects, while improving reasoning about effect
handlers. Using the newly gained guarantees, we define a sound and coherent evidence translation for effect
handlers, which directly passes the handlers as evidence to each operation. We prove full soundness and
coherence of the translation into plain lambda calculus. The evidence in turn enables efficient implementations
of effect operations; in particular, we show we can execute tail-resumptive operations in place (without needing
to capture the evaluation context), and how we can replace the runtime search for a handler by indexing with
a constant offset.

CCS Concepts: » Software and its engineering — Control structures; Polymorphism; « Theory of
computation — Type theory.

Additional Key Words and Phrases: Algebraic Effects, Handlers, Evidence Passing Translation
ACM Reference Format:

Ningning Xie, Jonathan Immanuel Brachthéuser, Daniel Hillerstrém, Philipp Schuster, and Daan Leijen.
2020. Effect Handlers, Evidently. Proc. ACM Program. Lang. 4, ICFP, Article 99 (August 2020), 29 pages.

https://doi.org/10.1145/3408981

1 INTRODUCTION

63

Evidence-passing semantics

> Pass handlers down to the
operation call sites

» Evaluate tail-resumptive
operations in-place

» A Haskell library

ICFP
Effe

NINCG
JONA
DANI
PHIL
DAA

Algebr|
perhay
resum,
handle|
handld
cohere|
of effe
to cap
a cons

CCs ¢
comp
Additi

ACM
Ningni
2020.
https:

1 IN

Effect Handlers in Haskell, Evidently

Haskell’20
Ningning Xie
Microsoft Research
nnxie@cs.hku.hk
Abstract

Algebraic effect handlers offer an alternative to monads to
incorporate effects in Haskell. In recent work Xie et al. show
how to give semantics to effect handlers in terms of plain
polymorphic lambda calculus through evidence translation.
Besides giving precise semantics, this translation also al-
lows for potentially more efficient implementations. Here
‘we present the first implementation of this technique as a
library for effect handlers in Haskell. We show how the de-
sign naturally leads to a concise effect interface and how
evidence translation enables evaluating tail resumptive oper-
ations in-place. We give detailed benchmark results where
our library performs well with respect to other approaches.

CCS Concepts: + Software and its engineering — Con-
trol structures; Polymorphism.

Keywords: Algebraic Effects, Handlers, Evidence Passing
Translation

ACM Reference Format:
Ningning Xie and Daan Leijen. 2020. Effect Handlers in Haskell,
Evidently. In Proceedings of the 13th ACM SIGPLAN International
Haskell Symposium (Haskell '20), August 27, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145,
3406088.3409022

Daan Leijen
Microsoft Research

daan@microsoft.com

calculus through evidence translation. Besides giving
cise semantics, this translation also allows for potent
more efficient implementations — a handler is now
as evidence to the call site of an operation where it c:
invoked immediately without needing to search for it.
we present the first implementation of this technique
library for effect handlers in Haskell. In particular,

 We give an implementation of effect handlers t
on the target language F¥ in [Xie et al. 2020]
implements effect handler semantics faithfully a
particular enforces the scoped resumptions restri
(although at runtime only).

The library interface (Figure 1) is concise and arg
simpler than other library interfaces for effect han
In particular, effects are defined as a regular data
with a field for each operation. For example,

data Reader a e ans

= Reader{ ask :: Op () a e ans }
declares a Reader effect with one operation ask
O to a (in effect context e with answer type
Other libraries typically require GADT’s Ei?él) o
Ishii 2015), data types a la carte [Swiers 008
et al. 2014], or Template Haskell [Kammar et al. :

Evidence-passing semantics

> Pass handlers down to the
operation call sites

» Evaluate tail-resumptive
operations in-place

> A-HaskellHibrary

Two Haskell libraries

ICFP
Effe

NINCG
JONA
DANI
PHIL
DAA

Algebr|
perhay
resum,
handle|
handld
cohere|
of effe
to cap
a cons

CCs ¢
comp

Additi

ACM
Ningni
2020.
https:

1 IN

Haskell’20

i&

Absty
Algebr,
incorp
how t

polym
Beside:
lows fi
we pre
library]
sign n:
eviden
ations

our lib;

CCs C
trol st

Keywol
Transl

ACMR|
Ningni
Evident|
Haskell
USA. A
3406088

ICFP'21

Generalized Evidence Passing for Effect Handlers
Efficient Compilation of Effect Handlers to C

NINGNING XIE, University of Hong Kong, China
DAAN LEIJEN, Microsoft Research, USA

This paper studies compilation techniques for algebraic effect handlers. In particular, we p
of refinements of algebraic effects, going via multi-prompt delimited control, generalizec
yield bubbling, and finally a monadic translation into plain lambda calculus which can be c
to many target platforms. Along the way we explore various interesting points in the
provide two impl; ions of our techni one as a library in Haskell, and one a

the Koka programming language. We show that our techniques are effective, by compa
other best-in-class implementations of effect handlers: multi-core OCaml, the Ev.Eff H:
the libhandler C library. We hope this work can serve as a basis for future designs and in
algebraic effects.

CCS Concepts: » Software and its engineering — Control structures; Polymorphi
computation — Type theory.

Additional Key Words and Phrases: Algebraic Effects, Handlers, Evidence Passing

ACM Reference Format:
Ningning Xie and Daan Leijen. 2021. Generalized Evidence Passing for Effect Handl&r3 Eff
of Effect Handlers to C. Proc. ACM Program. Lang. 5, ICFP, Article 71 (August 2021), 30 pag

Evidence-passing semantics

ICFP

Effe Haskell’20 @

» Pass handlers down to the NING ICFP21

JONA 1
operation call sites oy Genl 0opsLA22 A
1 1 DAA Efficig
» Evaluate tail-resumptive .
P Algebt Absty First-Class Names for Effect Handlers
. .) e NING
operations in-place perha Sl DAAI NINGNING XIE, University of Cambridge, UK
handle] how t YOUYOU CONG, Tokyo Institute of Technology, Japan

A—HaskeH “bl‘aFﬁ’ 1 i .
> handld gg:{;: Z‘?i‘seg KAZUKI IKEMORI, Tokyo Institute of Technology, Japan

cohere| lows fc DAAN LEIJEN, Microsoft Research, USA

Two Haskell libraries ofeffed wepr] Yelb ‘ o ,
to cap library) p"ro‘:’liad {%ltgelf)reuct Fﬁeclts and hand.lerslare a promé;ngtt;ch;);que for b11ncorpovra\tlmg co!
. . sign n into functional programming languages. Effect handlers enable concisely prog
> S p ecl fy t h e h an d |e r Wh en acons eviden the Ko but they do not offer a convenient way to program with different instances of |
i ccs g a“c';‘i other this inconvenience, previous studies have introduced named effect handlers, x
pe rformin g comp our the 1ib distinguish among different effect instances. However, existing formalizatio
Additi cesq algebr: involved and restrictive, as they employ non-standard mechanisms to prevent
trol st ces d In this paper, we propose a simple and flexible design of named handlers
ACM Keywol comp: names as first-class values, and prevent their escaping while staying within
Ningni Transl: design is enabled by combining named handlers with scoped effects, a novel v:

2020. ACMR Additic a scope via rank-2 polymorphism. We formalize two combinations of name

https: Ningni and implement them in the Koka programming language. We also present f
Evident ACM . . A= .
o Ningni handlers, including a neural network and a unification algorithm. 63

1IN ;5[2'“‘; of Effef CCS Concepts: » Software and its engineering — Control structures;

Compile effect handlers efficiently

» Continuation-passing style Links [Hillerstrom et al.(2017)]
Closure allocation cost

» Segmented stacks OCaml [Sivaramakrishnan et al.(2021)]
Efficient one-shot resumption

» Capability-passing style Effekt [Schuster et al.(2020), Brachthiuser et al.(2020)]
Efficient lexically scoped handlers

» Rewriting Eff [Karachalias et al.(2021)]
Source-to-source transformations

» Evidence-passing semantics Koka [Xie et al.(2020), Xie and Leijen(2021)]

Efficient tail-resumptive operations

64

Effect handlers benchmarks suite

effect-handlers /

- O effect-handlers-bench

<> Code () lIssues 16 I Pullrequests 3 ~ (Actions [Projects 1 @ Security [~ Insights

® ¥ %
Benchmark repository of polyglot effect handler examples

&8 MIT license
¢ 20stars ¥ 8forks © Swatching ¥ 4Branches © 0Tags 4~ Activity) Custom properties

@ Public repository

¥ main ~ ¥ 4Branches ©0Tags ¥ © Q Gotofile t Gotofile + Addfile ~ l
& phischu Add the Effekt language (#52) @ v 7monthsago @ O
githubjworkflows Add the Effekt language (#52) 7 months ago
artifacts Adds eff artifact (#21) 2 years ago
benchmarks Add the Effekt language (#52) 7 montl

https://github.com/effect-handlers/effect-handlers-bench

65

https://github.com/effect-handlers/effect-handlers-bench

Resources

Effect bibliography

https://github.com/yallop/effects-bibliography

" An introduction to algebraic effects and handlers” [Pretnar(2015)]

" Effect-Handler Oriented Programming” [Lindley, OPLSS'22]

"Programming with Effect Handlers and FBIP in Koka” [Leijen and Xie, ICFP'21
Tutorial]

"What is algebraic about algebraic effects and handlers?” [Bauer(2018)]

66

https://github.com/yallop/effects-bibliography

[§ Andrej Bauer. 2018.

What is algebraic about algebraic effects and handlers?
arXiv preprint arXiv:1807.05923 (2018).

Jonathan Immanuel Brachthauser, Philipp Schuster, and Klaus Ostermann. 2020.

Effects as capabilities: effect handlers and lightweight effect polymorphism.

Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1-30.

Daniel Hillerstrom, Sam Lindley, Robert Atkey, and K. C. Sivaramakrishnan. 2017.

Continuation Passing Style for Effect Handlers. In 2nd International
Conference on Formal Structures for Computation and Deduction (FSCD
2017), Dale Miller (Ed.), Vol. 84. Dagstuhl, Germany, 18:1-18:19.
doi:10.4230/LIPIcs.FSCD.2017.18

Georgios Karachalias, Filip Koprivec, Matija Pretnar, and Tom Schrijvers. 2021.

Efficient compilation of algebraic effect handlers.
Proceedings of the ACM on Programming Languages 5, OOPSLA (2021), 1-28.

66

https://doi.org/10.4230/LIPIcs.FSCD.2017.18

Matija Pretnar. 2015.

An introduction to algebraic effects and handlers. invited tutorial paper.
Electronic notes in theoretical computer science 319 (2015), 19-35.

Philipp Schuster, Jonathan Immanuel Brachthauser, and Klaus Ostermann. 2020.
Compiling effect handlers in capability-passing style.

Proceedings of the ACM on Programming Languages 4, ICFP (2020), 1-28.

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and
Anil Madhavapeddy. 2021.

Retrofitting effect handlers onto OCaml. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and
Implementation. 206-221.

Ningning Xie, Jonathan Immanuel Brachthauser, Daniel Hillerstrom, Philipp
Schuster, and Daan Leijen. 2020.

66

Effect handlers, evidently.
Proceedings of the ACM on Programming Languages 4, ICFP (2020), 1-29.

Ningning Xie and Daan Leijen. 2021.

Generalized evidence passing for effect handlers: efficient compilation of

effect handlers to C.
Proceedings of the ACM on Programming Languages 5, ICFP (2021), 1-30.

66

	1. Algebraic effects
	1.1. Introduction
	1.2. Computational trees and free monad
	1.3. Generic effects

	2. Effect handlers
	2.1. Introductions
	2.2. Effect type system

	3. Implementing effect handlers

