
ECP Community BOF: Observing GPU
Performance Using the TAU Performance System®

March 30, 2021, 10am PT
https://www.exascaleproject.org/event/ecp-community-bof-days-2021/

Sameer Shende, Kevin Huck, Allen Malony, Wyatt Spear, Camille Coti
Performance Research Laboratory, OACISS, University of Oregon
http://tau.uoregon.edu/TAU_BoF_Mar21.pdf

https://www.exascaleproject.org/event/ecp-community-bof-days-2021/

2

Challenges

• With growing hardware complexity, it is getting harder to
accurately measure and optimize the performance of our
HPC and AI/ML workloads.

• TAU Performance System®:
– Deliver a scalable, portable, performance evaluation toolkit for HPC and

AI/ML workloads
– http://tau.uoregon.edu

http://tau.uoregon.edu/

3

TAU Performance System®

Parallel performance framework and toolkit
Supports all HPC platforms, compilers, runtime system
Provides portable instrumentation, measurement, analysis

4

TAU Performance System

Instrumentation
• Fortran, C++, C, UPC, Java, Python, Chapel, Spark
• Automatic instrumentation

Measurement and analysis support
• MPI, OpenSHMEM, ARMCI, PGAS, DMAPP
• pthreads, OpenMP, OMPT interface, hybrid, other thread models
• GPU, ROCm, CUDA, OpenCL, OpenACC
• Parallel profiling and tracing

Analysis
• Parallel profile analysis (ParaProf), data mining (PerfExplorer)
• Performance database technology (TAUdb)
• 3D profile browser

5

• How much time is spent in each application routine and outer loops? Within loops, what is the
contribution of each statement? What is the time spent in OpenMP loops? In kernels on
GPUs. How long did it take to transfer data between host and device (GPU)?

• How many instructions are executed in these code regions?
Floating point, Level 1 and 2 data cache misses, hits, branches taken? What is the extent of
vectorization for loops?

• What is the memory usage of the code? When and where is memory allocated/de-allocated?
Are there any memory leaks? What is the memory footprint of the application? What is the
memory high water mark?

• How much energy does the application use in Joules? What is the peak power usage?
• What are the I/O characteristics of the code? What is the peak read and write bandwidth of

individual calls, total volume?
• How does the application scale? What is the efficiency, runtime breakdown of performance

across different core counts?

Application Performance Engineering
using TAU

6

Instrumentation

• Source instrumentation using a preprocessor
– Add timer start/stop calls in a copy of the source code.
– Use Program Database Toolkit (PDT) for parsing source code.
– Requires recompiling the code using TAU shell scripts (tau_cc.sh, tau_f90.sh)
– Selective instrumentation (filter file) can reduce runtime overhead and narrow instrumentation

focus.

• Compiler-based instrumentation
– Use system compiler to add a special flag to insert hooks at routine entry/exit.
– Requires recompiling using TAU compiler scripts (tau_cc.sh, tau_f90.sh…)

• Runtime preloading of TAU’s Dynamic Shared Object (DSO)
– No need to recompile code! Use mpirun tau_exec ./app with options.

Add hooks in the code to perform measurements

7

Profiling and Tracing

• Tracing shows you when the events take
place on a timeline

Profiling Tracing

• Profiling shows you how much
(total) time was spent in each routine

• Profiling and tracing

Profiling shows you how much (total) time was spent in each routine
Tracing shows you when the events take place on a timeline

8

Instrumentation
• Direct and indirect performance observation
• Instrumentation invokes performance measurement
• Direct measurement with probes
• Indirect measurement with periodic sampling or hardware performance

counter overflow interrupts
• Events measure performance data, metadata, context, etc.

• User-defined events
• Interval (start/stop) events to measure exclusive & inclusive duration
• Atomic events take measurements at a single point

• Measures total, samples, min/max/mean/std. deviation statistics
• Context events are atomic events with executing context

• Measures above statistics for a given calling path

9

inclusive
duration

exclusive
duration

int foo()
{

int a;
a =a + 1;

bar();

a =a + 1;
return a;

}

Inclusive vs. Exclusive Measurements

• Performance with respect to code regions
• Exclusive measurements for region only
• Inclusive measurements includes child regions

10

Inclusive Measurements

11

Exclusive Time

12

How much data do you want?

Limited
Profile

Flat
Profile

Loop
Profile

Callsite
Profile

Callpath
Profile

Trace

O(KB) O(TB)

13

ParaProf Profile Browser

% paraprof

14

ParaProf Profile Browser

15

ParaProf 3D Profile Browser

16

TAU – ParaProf 3D Visualization

% paraprof app.ppk
Windows -> 3D Visualization -> Bar Plot (right pane)

17

TAU – 3D Communication Window

% export TAU_COMM_MATRIX=1; mpirun … tau_exec ./a.out
% paraprof ; Windows -> 3D Communication Matrix

18

Tracing: Jumpshot (ships with TAU)

19

Tracing: Chrome Browser

% export TAU_TRACE=1
% mpirun –np 256 tau_exec ./a.out
% tau_treemerge.pl; tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing (Load -> app.json)

20

Vampir [TU Dresden] Timeline: Kokkos

% export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2
% tau_exec –ompt ./a.out
% vampir traces.otf2 &

21

Performance Data Measurement

Direct via Probes Indirect via Sampling

• Exact
measurement

• Fine-grain control
• Calls inserted

into code

• No code modification
• Minimal effort
• Relies on debug

symbols (-g)

Call START(‘potential’)
// code
Call STOP(‘potential’)

22

Sampling

• Running program is periodically interrupted to take
measurement

• Timer interrupt, OS signal, or HWC overflow
• Service routine examines return-address stack
• Addresses are mapped to routines using

symbol table information
• Statistical inference of program behavior

• Not very detailed information on highly volatile
metrics

• Requires long-running applications
• Works with unmodified executables

Time

main foo(0) foo(1) foo(2)

int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Measurement

t9t7t6t5t4t1 t2 t3 t8

23

Instrumentation

• Measurement code is inserted such that every event
of interest is captured directly

• Can be done in various ways
• Advantage:

• Much more detailed information
• Disadvantage:

• Processing of source-code / executable
necessary

• Large relative overheads for small functions

Time

Measurement int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12t13 t14

main foo(0) foo(1) foo(2)

Start(“main”);

Stop(“main”);

Start(“foo”);

Stop(“foo”);

24

Using TAU’s Runtime Preloading Tool: tau_exec
Preload a wrapper that intercepts the runtime system call and substitutes with another

MPI

OpenMP

POSIX I/O

Memory allocation/deallocation routines

Wrapper library for an external package

No modification to the binary executable!

Enable other TAU options (communication matrix, OTF2, event-based sampling)

25

Event Based Sampling (EBS)

% mpirun -n 16 tau_exec –ebs a.out

Uninstrumented!

File: point_solver.F90
Line: 2705

26

Event Based Sampling (EBS): QMCPack

Ran for 1066.528 seconds. Outside of MPI calls, TAU can explain 975.151 seconds out of 979.071 seconds of exclusive time using EBS!

27

Event Based Sampling (EBS) shows statement level information

File: ibv_channel_manager.c
Line: 1018

28

Event Based Sampling without symbol information (-g): QMCPack

Line number is 0!

~147.71 seconds are spent in
Qmcplusplus:DTD_Bconds::
computeDistances method

29

EBS introspection in system libraries

30

TAU’s Support for Runtime Systems

• MPI
• PMPI profiling interface
• MPI_T tools interface using performance and control variables

• Pthread
• Captures time spent in routines per thread of execution

• OpenMP
• OMPT tools interface to track salient OpenMP runtime events
• Opari source rewriter
• Preloading wrapper OpenMP runtime library when OMPT is not supported

• OpenACC
• OpenACC instrumentation API
• Track data transfers between host and device (per-variable)
• Track time spent in kernels

31

TAU’s Support for Runtime Systems (contd.)

• OpenCL
• OpenCL profiling interface
• Track timings of kernels

• Intel® OneAPI
• Level Zero
• Track time spent in kernels executing on GPU
• Track time spent in OneAPI runtime calls

• CUDA
• Cuda Profiling Tools Interface (CUPTI)
• Track data transfers between host and GPU
• Track access to uniform shared memory between host and GPU

• ROCm
• Rocprofiler and Roctracer instrumentation interfaces
• Track data transfers and kernel execution between host and GPU

• Kokkos
• Kokkos profiling API
• Push/pop interface for region, kernel execution interface

• Python
• Python interpreter instrumentation API
• Tracks Python routine transitions as well as Python to C transitions

32

Examples of Multi-Level Instrumentation

• MPI + OpenMP
• MPI_T + PMPI + OMPT may be used to track MPI and OpenMP

• MPI + CUDA
• PMPI + CUPTI interfaces

• MPI + Intel ® OneAPI DPC++/SYCL
• PMPI + Level Zero interfaces
• OpenCL + ROCm

• Rocprofiler + OpenCL instrumentation interfaces
• Kokkos + OpenMP

• Kokkos profiling API + OMPT to transparently track events
• Kokkos + pthread + MPI

• Kokkos + pthread wrapper interposition library + PMPI layer
• Python + CUDA + MPI

• Python + CUPTI + pthread profiling interfaces (e.g., Tensorflow, PyTorch) + MPI
• MPI + OpenCL

• PMPI + OpenCL profiling interfaces

33

Kokkos
• Provides abstractions for node level parallelism (X in MPI+X)
• Productive, portable, and performant shared-memory programming model
• Helps you create single source performance portable codes
• Provides data abstractions
• C++ API for expressing parallelism in your program
• Aggressive compiler transformations using C++ templates
• Low level code targets backends such as OpenMP, Pthread, CUDA
• Creates a problem for performance evaluation tools
• Gap: performance data and higher-level abstractions
• Solution: Kokkos profiling API for mapping performance data
• https://kokkos.org Sandia National Laboratories, NM

https://kokkos.org/

34

Kokkos API use in ExaMiniMD
pushRegion(“Comm::update_halo”)

popRegion

Kokkos::parallel_for

35

ExaMiniMD: TAU Phase

Comm::update_halo phase in TAU ParaProf’s Thread Statistics Table

36

Event-based Sampling (EBS):
CabanaMD on an IBM AC922 with NVIDIA V100 GPUs

Event-based sampling (EBS) with Kokkos API

37

TAU Execution Command (tau_exec)
Uninstrumented execution

% mpirun -np 256 ./a.out
Track GPU operations

% mpirun –np 256 tau_exec –rocm ./a.out
% mpirun –np 256 tau_exec –l0 ./a.out
% mpirun –np 256 tau_exec –cupti ./a.out
% mpirun –np 256 tau_exec –opencl ./a.out
% mpirun –np 256 tau_exec –openacc ./a.out

Track MPI performance
% mpirun -np 256 tau_exec ./a.out

Track I/O, and MPI performance (MPI enabled by default)
% mpirun -np 256 tau_exec -io ./a.out

Track OpenMP and MPI execution (using OMPT for Intel v19+ or Clang 8+)
% export TAU_OMPT_SUPPORT_LEVEL=full;
% mpirun –np 256 tau_exec –T ompt,v5,mpi -ompt ./a.out

Track memory operations
% export TAU_TRACK_MEMORY_LEAKS=1
% mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check)

Use event based sampling (compile with –g)
% mpirun –np 256 tau_exec –ebs ./a.out
Also export TAU_METRICS=TIME,PAPI_L1_DCM… -ebs_resolution=<file | function | line>

38

AMD HIP: Kernel execution on GPUs: rochpcg

% mpirun –np 64 tau_exec –rocm ./a.out

39

Intel Level Zero (TigerLake Gen12LP integrated CPUs or DG1)

% mpirun –np 64 tau_exec –l0 ./a.out

Time spent in GEMM kernel

Units: microseconds

Units: seconds

40

CUPTI (CUDA Profiling Tools Interface)

Python, MPI, CUDA, and samples from DSOs are all integrated in a single view
% mpirun –np 64 tau_python –cupti ./exafel.py

41

TAU supports Python, MPI, and CUDA

Without any modification to the source code or DSOs or interpreter, it instruments and
samples the application using Python, MPI, and CUDA instrumentation.

% mpirun –np 230 tau_python –T cupti,mpi,pdt –ebs –cupti ./exafel.py
Instead of:
% mpirun –np 230 python ./exafel.py

Kernel on GPU

42

Deep Learning: Tensorflow

% tau_python –ebs nt3_baseline_keras2.py

43

MPI Tools Interface: PVARs and CVARs

% export TAU_TRACK_MPI_T_PVARS=1
% mpirun –np 64 tau_exec –T mpit ./a.out

44

MPI Tools Interface: Control Variables (CVARs)

45

MPI Tools Interface: Performance Variables (PVARs)

46

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOOTPRINT 0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size and high water mark of memory
usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically.

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information, setting to 1 generates flat profile and
context events have just parent information (e.g., Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and takes less than 10 usec of inclusive
time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was called. Also compatible with tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

TAU’s Runtime Environment Variables

47

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs or TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level respectively.

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include lists specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also, “lowoverhead” option is
available.

TAU_OMPT_RESOLVE_ADDRESS_EAGERLY 1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT. Setting to 0 allows the
user to do offline address translation.

Runtime Environment Variables

48

Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec –memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g., TAU_EBS_SOURCE=PAPI_TOT_INS
when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory debugging.

TAU_MEMDBG_PROTECT_BELOW/ABOVE 0 Setting to 1 enables tracking runtime bounds checking below or above the array bounds (requires –
optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory allocations.

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not be referenced until it is
reallocated (requires –optMemDbg or tau_exec –memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory error occurs at runtime.

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for min/max

Runtime Environment Variables

49

Download TAU from U. Oregon

http://tau.uoregon.edu
https://e4s.io [TAU in Docker/Singularity containers]

for more information
Free download, open source, BSD license

http://tau.uoregon.edu/
https://e4s.io/

50

Performance Research Laboratory, University of Oregon, Eugene

www.uoregon.edu

http://www.uoregon.edu

51

• US Department of Energy (DOE)
– ANL
– Office of Science contracts, ECP
– SciDAC, LBL contracts
– LLNL-LANL-SNL ASC/NNSA contract
– Battelle, PNNL and ORNL contract

• Department of Defense (DoD)
– PETTT, HPCMP

• National Science Foundation (NSF)
– SI2-SSI, Glassbox

• NASA

• CEA, France

• Partners:
–University of Oregon
–The Ohio State University
–ParaTools, Inc.
–University of Tennessee, Knoxville
–T.U. Dresden, GWT
–Jülich Supercomputing Center

Support Acknowledgements

52

Acknowledgment

“This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of
two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security

Administration) responsible for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering, and early testbed platforms, in support

of the nation’s exascale computing imperative.”

53

