
Multi-Level	Performance	Instrumentation	
for	Kokkos	Applications	using	TAU	

Sameer	Shende,	Nicholas	Chaimov,	Allen	D.	Malony	
ParaTools,	Inc.		

{sameer,nchaimov,malony}@paratools.com	
	

Neena	Imam	
Oak	Ridge	National	Laboratory	

imamm@ornl.gov	
	

ProTools	Workshop,	SC19,	Denver,	CO	
Sunday,	November	17,	2019,	4pm	–		4:15pm	

Room	704-706	
Slides:	

http://tau.uoregon.edu/TAU_Kokkos_SC19.pdf	

1	

Motivation: Kokkos
https://github.com/kokkos/kokkos

•  Provides abstractions for node level parallelism (X in MPI+X)
•  Productive, portable, and performant shared-memory

programming model
•  Helps you create single source performance portable codes
•  Provides data abstractions
•  C++ API for expressing parallelism in your program
•  Aggressive compiler transformations using C++ templates
•  Low level code targets backends such as OpenMP, Pthread,

CUDA
•  Creates a problem for performance evaluation tools
•  Gap: performance data and higher-level abstractions
•  Solution: Kokkos profiling API for mapping performance data
•  This talk: experience extending TAU to support Kokkos

2

TAU Performance System®

•  Tuning and Analysis Utilities (20+ year project)
•  Comprehensive performance profiling and tracing

•  Integrated, scalable, flexible, portable
•  Targets all parallel programming/execution paradigms

•  Integrated performance toolkit
•  Instrumentation, measurement, analysis, visualization
•  Widely-ported performance profiling / tracing system
•  Performance data management and data mining
•  Open source (BSD-style license)

•  Easy to integrate in application frameworks
•  http://tau.uoregon.edu

3

Understanding Application
Performance using TAU

•  How much time is spent in each application routine and outer loops?
Within loops, what is the contribution of each statement?

•  How many instructions are executed in these code regions?
Floating point, Level 1 and 2 data cache misses, hits, branches taken?

•  What is the memory usage of the code? When and where is memory
allocated/de-allocated? Are there any memory leaks?

•  What are the I/O characteristics of the code? What is the peak read
and write bandwidth of individual calls, total volume?

•  What is the extent of data transfer between host and a GPU? In an
Kokkos, OpenMP, OpenCL program.

•  What is the contribution of each phase of the program? What is the
time wasted/spent waiting for collectives, and I/O operations in
Initialization, Computation, I/O phases?

•  How does the application scale? What is the efficiency, runtime
breakdown of performance across different core counts?

4

Types	of	Performance	Profiles	

Flat	profiles	
•  Metric	(e.g.,	time)	spent	in	an	event	
•  Exclusive/inclusive,	#	of	calls,	child	calls,	…	

Callpath	profiles	
•  Time	spent	along	a	calling	path	(edges	in	callgraph)	
•  “main=>	f1	=>	f2	=>	MPI_Send”	
•  Set	the	TAU_CALLPATH	and	TAU_CALLPATH_DEPTH	environment	variables	

Callsite	profiles	
•  Time	spent	along	in	an	event	at	a	given	source	location	
•  Set	the	TAU_CALLSITE	environment	variable	

Phase	profiles	
•  Flat	profiles	under	a	phase	(nested	phases	allowed)	
•  Default	“main”	phase	
•  Supports	static	or	dynamic	(e.g.	per-iteration)	phases	

5	

Kokkos Profiling Interface

extern	"C"	void	kokkosp_init_library(…);	
extern	"C"	void	kokkosp_finalize_library();	

extern	"C"	void	kokkosp_begin_parallel_for(const	char*	name,…);	
extern	"C"	void	kokkosp_begin_parallel_reduce(const	char*	name,	…);		
extern	"C"	void	kokkosp_begin_parallel_scan(const	char*	name,	…);		
/*	corresponding	end	parallel	constructs	*/	
extern	"C"	void	kokkosp_push_profile_region(const	char*	name);	
extern	"C"	void	kokkosp_pop_profile_region();	
…	/*	other	APIs	for	sections,	data	transfers,	memory	allocation,	…*/	
	
	
	

6

TAU

•  Tracks	kernel	names	specified	as	the	first	parameter	in	parallel	API		
•  When	name	is	not	specified,	TAU	uses	the	template	instantiation	
•  TAU	needs	to	demangle	mangled	names	of	C++	entities	
•  TAU	maps	Kokkos	profiling	regions	to	TAU	phases	
•  In	a	TAU	phase,	all	functions	called	directly/indirectly	are	flattened	

into	a	flat	profile	under	the	phase	
•  Other	runtime	system	calls	(CUDA,	Pthread,	OpenMP)	are	also	

tracked	alongside	Kokkos	calls	
•  Multi-level	instrumentation	support	in	TAU	can	help	us	slice	through	

multiple	runtime	layers	
	

7

TAU Architecture and Workflow

8	

TAU’s	Support	for	Runtime	Systems	

MPI	
•  PMPI	profiling	interface	
•  MPI_T	tools	interface	using	performance	and	control	variables	

Kokkos	
•  Kokkos	profiling	API	
•  Push/pop	interface	for	region,	kernel	execution	interface	

Pthread	
•  Captures	time	spent	in	routines	per	thread	of	execution	

OpenMP	
•  OMPT	tools	interface	to	track	salient	OpenMP	runtime	events	
•  Opari	source	rewriter	
•  Preloading	wrapper	OpenMP	runtime	library	when	OMPT	is	not	

supported	

9	

TAU’s	Support	for	Runtime	Systems	(contd.)	
OpenCL	

•  OpenCL	profiling	interface	
•  Track	timings	of	kernels	

OpenACC	
•  OpenACC	instrumentation	API	
•  Track	data	transfers	between	host	and	device	(per-variable)	
•  Track	time	spent	in	kernels		

CUDA	
•  Cuda	Profiling	Tools	Interface	(CUPTI)	
•  Track	data	transfers	between	host	and	GPU	
•  Track	access	to	uniform	shared	memory	between	host	and	GPU	

ROCm	
•  Rocprofiler	and	Roctracer	instrumentation	interfaces	
•  Track	data	transfers	and	kernel	execution	between	host	and	GPU	

Python	
•  Python	interpreter	instrumentation	API	
•  Tracks	Python	routine	transitions	as	well	as	Python	to	C	transitions	

10	

Examples	of	Multi-Level	Instrumentation		

MPI	+	OpenMP	
•  MPI_T	+	PMPI	+	OMPT	may	be	used	to	track	MPI	and	OpenMP	

MPI	+	CUDA	
•  PMPI	+	CUPTI	interfaces		

OpenCL	+	ROCm	
•  Rocprofiler	+	OpenCL	instrumentation	interfaces	

Kokkos	+	OpenMP		
•  Kokkos	profiling	API	+	OMPT	to	transparently	track	events	

Kokkos	+	pthread	+	MPI		
•  Kokkos	+	pthread	wrapper	interposition	library	+	PMPI	layer	

Python	+	CUDA	
•  Python	+	CUPTI	+	pthread	profiling	interfaces	(e.g.,	Tensorflow,	PyTorch)	

MPI	+	OpenCL	
•  PMPI	+	OpenCL	profiling	interfaces	

	
	 11	

Simplifying the use of TAU!
Uninstrumented code:

•  % make

•  % mpirun –np 256 ./a.out

With TAU using event based sampling (EBS):

•  % mpirun –np 256 tau_exec –ebs ./lu.B.64

•  % paraprof (GUI)

•  % pprof –a | more

NOTE:

•  Requires dynamic executables (-dynamic link flag on Cray XC systems).

•  Source code should be compiled with –g for access to symbol table.

•  Kokkos support is on by default in tau_exec

12	

TAU Execution Command (tau_exec)
Uninstrumented execution

•  % mpirun -np 256 ./a.out
Track GPU operations

•  % mpirun –np 256 tau_exec –rocm ./a.out
•  % mpirun –np 256 tau_exec –cupti ./a.out
•  % mpirun –np 256 tau_exec –opencl ./a.out
•  % mpirun –np 256 tau_exec –openacc ./a.out

Track MPI performance
•  % mpirun -np 256 tau_exec ./a.out

Track I/O, and MPI performance (MPI enabled by default)
•  % mpirun -np 256 tau_exec -io ./a.out

Track OpenMP and MPI execution (using OMPT for Intel v19)
•  % export TAU_OMPT_SUPPORT_LEVEL=full;

% mpirun –np 256 tau_exec –T openmp,ompt,v5,mpi -ompt ./a.out
Track memory operations

•  % export TAU_TRACK_MEMORY_LEAKS=1
•  % mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check)

Use event based sampling (compile with –g)
•  % mpirun –np 256 tau_exec –ebs ./a.out
•  Also -ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count>

 -ebs_resolution=<file | function | line>

13	

Kokkos API use in ExaMiniMD

14	

pushRegion(“Comm::update_halo”)

popRegion

Kokkos::parallel_for

ExaMiniMD: TAU Phase

15	

Comm::update_halo phase in TAU ParaProf’s Thread Statistics Table

ExaMiniMD: ParaProf Node Window

16	

Event-based Sampling (EBS): CabanaMD

17	

EBS with Kokkos API

CabanaMD: CUDA Events

18	

Jumpshot Trace Visualizer

19	

Vampir [TU Dresden] Timeline Display

20	

% export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2
% mpirun –np 16 tau_exec ./a.out
% vampir traces.otf2

An API model for other runtimes?

•  Kokkos	profiling	interface	is	very	elegant	
•  Kokkos	API	calls	are	defined	by	the	tools	
•  Kokkos	maintains	compatibility	between	its	releases	
•  No	need	for	a	header	file,	no	#defines,	type	names	
•  Additional	calls	may	be	added	to	the	API,	but	are	not	necessary	for	

an	older	version	of	the	tool	to	support	a	new	version	of	Kokkos	
•  No	need	for	tool	to	be	compiled	with	a	given	version	of	Kokkos	
•  At	startup,	if	KOKKOS_PROFILE_LBIRARY	environment	variable	is	

defined,	it		loads	the	library,	if	not,	profiling	calls	are	disabled	
•  Profiling	hooks	are	activated	by	loading	the	agent	library	
•  Hooks	may	be	disabled	during	configuration,	enabled	by	default	
•  Is	this	a	good	model	for	other	runtimes	to	adopt?	
•  Is	there	a	need	for	a	single	tool	to	provide	access	to	events	across	

different	runtimes/programming	models?		
	

21

Acknowledgment	

“This	work	was	supported	by	the	United	States	Department	of	
Defense	(DoD)	and	used	resources	of	the	Computational	
Research	and	Development	Programs,	the	Oak	Ridge	Lead-	
ership	Computing	Facility	(OLCF)	at	Oak	Ridge	National	
Laboratory,	and	the	Performance	Research	Laboratory	at	the	
University	it	Oregon.	This	research	was	supported	by	the	Exas-	
cale	Computing	Project	(17-SC-20-SC),	a	collaborative	effort	of	
the	U.S.	Department	of	Energy	Office	of	Science	and	the	
National	Nuclear	Security	Administration.	This	work	benefited	
from	access	to	the	University	of	Oregon	high	performance	
computer,	Talapas.	The	authors	would	like	to	thank	Sam	Reeve	
(LLNL),	for	his	assistance	with	CabanaMD.”		
	

22	

Support Acknowledgments
US Department of Energy (DOE)

•  ORNL
•  Office of Science contracts, ECP
•  SciDAC, LBL contracts
•  LLNL-LANL-SNL ASC/NNSA contract
•  Battelle, PNNL and ANL contract

US Department of Defense (DoD)
•  HPCMP, ORNL

National Science Foundation (NSF)
•  SI2-SSI, CSSI

NASA
CEA, France
Partners:

• University of Oregon
• The Ohio State University
• ParaTools, Inc.
• University of Tennessee, Knoxville

23	

Acknowledgment	

“This	research	was	supported	by	the	Exascale	Computing	Project		
(17-SC-20-SC),	a	collaborative	effort	of	two	U.S.	Department	of	Energy	
organizations	(Office	of	Science	and	the	National	Nuclear	Security	

Administration)	responsible	for	the	planning	and	preparation	of	a	capable	
exascale	ecosystem,	including	software,	applications,	hardware,	advanced	
system	engineering,	and	early	testbed	platforms,	in	support	of	the	nation’s	

exascale	computing	imperative.”	
http://exascaleproject.org	

	 24	

Download	TAU	

	
http://tau.uoregon.edu	

http://taucommander.com		
https://e4s.io		

[E4S:	Extreme-Scale	Scientific	Software	Stack]	
For	more	info	on	E4S:	E4S	BoF,	Tues,	12:15pm,	Room	#405-407	

Free	download,	open	source,	BSD	license	
	

25	

Reference	

26	

Installing	and	Configuring	TAU	
• Installing	PDT:	

•  wget	tau.uoregon.edu/pdt_lite.tgz	
•  ./configure	–prefix=<dir>;	make	;	make	install	

• Installing	TAU:	
•  	wget	tau.uoregon.edu/tau.tgz;				tar	zxf	tau.tgz;	cd	tau-2.<ver>	
•  	wget	http://tau.uoregon.edu/ext.tgz	;	tar	xf	ext.tgz	
•  	./configure	-bfd=download	-pdt=<dir>		

-iowrapper	-mpi	–dwarf=download	–unwind=download	–
otf=download	–papi=<dir>	
make	install	

• Using	TAU:	
•  export	TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-

<TAGS>	
•  make	CC=tau_cc.sh			CXX=tau_cxx.sh			F90=tau_f90.sh	

27	

Compile-Time Options
Optional parameters for the TAU_OPTIONS environment variable:
% tau_compiler.sh

-optVerbose Turn on verbose debugging messages
-optCompInst Use compiler based instrumentation
-optNoCompInst Do not revert to compiler instrumentation if source

 instrumentation fails.
�-optTrackIO Wrap POSIX I/O call and calculates vol/bw of I/O operations

 (Requires TAU to be configured with –iowrapper)
�-optTrackGOMP Enable tracking GNU OpenMP runtime layer (used without –opari)
�-optMemDbg Enable runtime bounds checking (see TAU_MEMDBG_* env vars)
-optKeepFiles Does not remove intermediate .pdb and .inst.* files
-optPreProcess Preprocess sources (OpenMP, Fortran) before instrumentation
-optTauSelectFile=”<file>" Specify selective instrumentation file for tau_instrumentor
-optTauWrapFile=”<file>" Specify path to link_options.tau generated by tau_gen_wrapper
-optHeaderInst Enable Instrumentation of headers
-optTrackUPCR Track UPC runtime layer routines (used with tau_upc.sh)
-optLinking="" Options passed to the linker. Typically

 $(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)
-optCompile="" Options passed to the compiler. Typically

 $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse) …

28

Compile-Time Options (contd.)
Optional parameters for the TAU_OPTIONS environment variable:
% tau_compiler.sh

-optShared Use TAU’s shared library (libTAU.so) instead of static library (default)
�-optPdtCxxOpts=“” Options for C++ parser in PDT (cxxparse).
�-optPdtF90Parser=“” Specify a different Fortran parser
�-optPdtCleanscapeParser Specify the Cleanscape Fortran parser instead of GNU gfparser
-optTau=“” Specify options to the tau_instrumentor
-optTrackDMAPP Enable instrumentation of low-level DMAPP API calls on Cray
-optTrackPthread Enable instrumentation of pthread calls

See tau_compiler.sh for a full list of TAU_OPTIONS.

…

29

Environment	Variable	 Default	 Description	

TAU_TRACE	 0	 Setting	to	1	turns	on	tracing	

TAU_CALLPATH	 0	 Setting	to	1	turns	on	callpath	profiling	

TAU_TRACK_MEMORY_FOO
TPRINT	

0	 Setting	to	1	turns	on	tracking	memory	usage	by	sampling	periodically	the	resident	set	size	
and	high	water	mark	of	memory	usage	

TAU_TRACK_POWER	 0	 Tracks	power	usage	by	sampling	periodically.		

TAU_CALLPATH_DEPTH	 2	 Specifies	depth	of	callpath.	Setting	to	0	generates	no	callpath	or	routine	information,	
setting	to	1	generates	flat	profile	and	context	events	have	just	parent	information	(e.g.,	
Heap	Entry:	foo)	

TAU_SAMPLING	 1	 Setting	to	1	enables	event-based	sampling.	

TAU_TRACK_SIGNALS	 0	 Setting	to	1	generate	debugging	callstack	info	when	a	program	crashes	

TAU_COMM_MATRIX	 0	 Setting	to	1	generates	communication	matrix	display	using	context	events	

TAU_THROTTLE	 1	 Setting	to	0	turns	off	throttling.	Throttles	instrumentation	in	lightweight	routines	that	are	
called	frequently	

TAU_THROTTLE_NUMCALLS	 100000	 Specifies	the	number	of	calls	before	testing	for	throttling	

TAU_THROTTLE_PERCALL	 10	 Specifies	value	in	microseconds.	Throttle	a	routine	if	it	is	called	over	100000	times	and	
takes	less	than	10	usec	of	inclusive	time	per	call	

TAU_CALLSITE	 0	 Setting	to	1	enables	callsite	profiling	that	shows	where	an	instrumented	function	was	
called.	Also	compatible	with	tracing.	

TAU_PROFILE_FORMAT	 Profile	 Setting	to	“merged”	generates	a	single	file.	“snapshot”	generates	xml	format	

TAU_METRICS	 TIME	 Setting	to	a	comma	separated	list	generates	other	metrics.	(e.g.,	
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)	

TAU’s	Runtime	Environment	Variables		

30	

Environment	Variable	 Default	 Description	

TAU_TRACE	 0	 Setting	to	1	turns	on	tracing	

TAU_TRACE_FORMAT	 Default	 Setting	to	“otf2”	turns	on	TAU’s	native	OTF2	trace	generation	(configure	with	–
otf=download)	

TAU_EBS_UNWIND	 0	 Setting	to	1	turns	on	unwinding	the	callstack	during	sampling	(use	with	tau_exec	–ebs	
or	TAU_SAMPLING=1)	

TAU_EBS_RESOLUTION	 line	 Setting	to	“function”	or	“file”	changes	the	sampling	resolution	to	function	or	file	level	
respectively.		

TAU_TRACK_LOAD	 0	 Setting	to	1	tracks	system	load	on	the	node	

TAU_SELECT_FILE	 Default	 Setting	to	a	file	name,	enables	selective	instrumentation	based	on	exclude/include	lists	
specified	in	the	file.	

TAU_OMPT_SUPPORT_LEVEL	 basic	 Setting	to	“full”	improves	resolution	of	OMPT	TR6	regions	on	threads	1..	N-1.	Also,	
“lowoverhead”	option	is	available.		

TAU_OMPT_RESOLVE_ADDRESS_
EAGERLY	

1	 Setting	to	1	is	necessary	for	event	based	sampling	to	resolve	addresses	with	OMPT.	
Setting	to	0	allows	the	user	to	do	offline	address	translation.		

Runtime Environment Variables

31	

Environment	Variable	 Default	 Description	

TAU_TRACK_MEMORY_LEAKS	 0	 Tracks	allocates	that	were	not	de-allocated	(needs	–optMemDbg	or	tau_exec	
–memory)	

TAU_EBS_SOURCE	 TIME	 Allows	using	PAPI	hardware	counters	for	periodic	interrupts	for	EBS	(e.g.,	
TAU_EBS_SOURCE=PAPI_TOT_INS	when	TAU_SAMPLING=1)	

TAU_EBS_PERIOD	 100000	 Specifies	the	overflow	count	for	interrupts	

TAU_MEMDBG_ALLOC_MIN/MAX	 0	 Byte	size	minimum	and	maximum	subject	to	bounds	checking	(used	with	
TAU_MEMDBG_PROTECT_*)	

TAU_MEMDBG_OVERHEAD	 0	 Specifies	the	number	of	bytes	for	TAU’s	memory	overhead	for	memory	
debugging.		

TAU_MEMDBG_PROTECT_BELOW/
ABOVE	

0	 Setting	to	1	enables	tracking	runtime	bounds	checking	below	or	above	the	
array	bounds	(requires	–optMemDbg	while	building	or	tau_exec	–memory)	

TAU_MEMDBG_ZERO_MALLOC	 0	 Setting	to	1	enables	tracking	zero	byte	allocations	as	invalid	memory	
allocations.		

TAU_MEMDBG_PROTECT_FREE	 0	 Setting	to	1	detects	invalid	accesses	to	deallocated	memory	that	should	not	
be	referenced	until	it	is	reallocated	(requires	–optMemDbg	or	tau_exec	–
memory)	

TAU_MEMDBG_ATTEMPT_CONTINUE	 0	 Setting	to	1	allows	TAU	to	record	and	continue	execution	when	a	memory	
error	occurs	at	runtime.		

TAU_MEMDBG_FILL_GAP	 Undefined	 Initial	value	for	gap	bytes	

TAU_MEMDBG_ALINGMENT	 Sizeof(int)	 Byte	alignment	for	memory	allocations	

TAU_EVENT_THRESHOLD	 0.5	 Define	a	threshold	value	(e.g.,	.25	is	25%)	to	trigger	marker	events	for	min/
max	

Runtime	Environment	Variables	

32	

