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Motivation: Kokkos 
https://github.com/kokkos/kokkos 

•  Provides abstractions for node level parallelism (X in MPI+X) 
•  Productive, portable, and performant shared-memory 

programming model 
•  Helps you create single source performance portable codes 
•  Provides data abstractions 
•  C++ API for expressing parallelism in your program 
•  Aggressive compiler transformations using C++ templates 
•  Low level code targets backends such as OpenMP, Pthread, 

CUDA 
•  Creates a problem for performance evaluation tools 
•  Gap: performance data and higher-level abstractions 
•  Solution: Kokkos profiling API for mapping performance data 
•  This talk: experience extending TAU to support Kokkos 
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TAU Performance System® 

•  Tuning and Analysis Utilities (20+ year project) 
•  Comprehensive performance profiling and tracing 

•  Integrated, scalable, flexible, portable 
•  Targets all parallel programming/execution paradigms 

•  Integrated performance toolkit 
•  Instrumentation, measurement, analysis, visualization 
•  Widely-ported performance profiling / tracing system 
•  Performance data management and data mining 
•  Open source (BSD-style license) 

•  Easy to integrate in application frameworks 
•                          http://tau.uoregon.edu 
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Understanding Application 
Performance using TAU 

•  How much time is spent in each application routine and outer loops? 
Within loops, what is the contribution of each statement?  

•  How many instructions are executed in these code regions?   
Floating point, Level 1 and 2 data cache misses, hits, branches taken?  

•  What is the memory usage of the code? When and where is memory 
allocated/de-allocated? Are there any memory leaks?  

•  What are the I/O characteristics of the code?  What is the peak read 
and write bandwidth of individual calls, total volume?  

•  What is the extent of data transfer between host and a GPU? In an 
Kokkos, OpenMP, OpenCL program.  

•  What is the contribution of each phase of the program? What is the 
time wasted/spent waiting for collectives, and I/O operations in 
Initialization, Computation, I/O phases? 

•  How does the application scale? What is the efficiency, runtime 
breakdown of performance across different core counts?  
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Types	of	Performance	Profiles	

Flat	profiles	
•  Metric	(e.g.,	time)	spent	in	an	event	
•  Exclusive/inclusive,	#	of	calls,	child	calls,	…	

Callpath	profiles	
•  Time	spent	along	a	calling	path	(edges	in	callgraph)	
•  “main=>	f1	=>	f2	=>	MPI_Send”	
•  Set	the	TAU_CALLPATH	and	TAU_CALLPATH_DEPTH	environment	variables	

Callsite	profiles	
•  Time	spent	along	in	an	event	at	a	given	source	location	
•  Set	the	TAU_CALLSITE	environment	variable	

Phase	profiles	
•  Flat	profiles	under	a	phase	(nested	phases	allowed)	
•  Default	“main”	phase	
•  Supports	static	or	dynamic	(e.g.	per-iteration)	phases	
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Kokkos Profiling Interface 

extern	"C"	void	kokkosp_init_library(…);	
extern	"C"	void	kokkosp_finalize_library();	

extern	"C"	void	kokkosp_begin_parallel_for(const	char*	name,…);	
extern	"C"	void	kokkosp_begin_parallel_reduce(const	char*	name,	…);		
extern	"C"	void	kokkosp_begin_parallel_scan(const	char*	name,	…);		
/*	corresponding	end	parallel	constructs	*/	
extern	"C"	void	kokkosp_push_profile_region(const	char*	name);	
extern	"C"	void	kokkosp_pop_profile_region();	
…	/*	other	APIs	for	sections,	data	transfers,	memory	allocation,	…*/	
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TAU 

•  Tracks	kernel	names	specified	as	the	first	parameter	in	parallel	API		
•  When	name	is	not	specified,	TAU	uses	the	template	instantiation	
•  TAU	needs	to	demangle	mangled	names	of	C++	entities	
•  TAU	maps	Kokkos	profiling	regions	to	TAU	phases	
•  In	a	TAU	phase,	all	functions	called	directly/indirectly	are	flattened	

into	a	flat	profile	under	the	phase	
•  Other	runtime	system	calls	(CUDA,	Pthread,	OpenMP)	are	also	

tracked	alongside	Kokkos	calls	
•  Multi-level	instrumentation	support	in	TAU	can	help	us	slice	through	

multiple	runtime	layers	
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TAU Architecture and Workflow 
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TAU’s	Support	for	Runtime	Systems	

MPI	
•  PMPI	profiling	interface	
•  MPI_T	tools	interface	using	performance	and	control	variables	

Kokkos	
•  Kokkos	profiling	API	
•  Push/pop	interface	for	region,	kernel	execution	interface	

Pthread	
•  Captures	time	spent	in	routines	per	thread	of	execution	

OpenMP	
•  OMPT	tools	interface	to	track	salient	OpenMP	runtime	events	
•  Opari	source	rewriter	
•  Preloading	wrapper	OpenMP	runtime	library	when	OMPT	is	not	

supported	

9	



TAU’s	Support	for	Runtime	Systems	(contd.)	
OpenCL	

•  OpenCL	profiling	interface	
•  Track	timings	of	kernels	

OpenACC	
•  OpenACC	instrumentation	API	
•  Track	data	transfers	between	host	and	device	(per-variable)	
•  Track	time	spent	in	kernels		

CUDA	
•  Cuda	Profiling	Tools	Interface	(CUPTI)	
•  Track	data	transfers	between	host	and	GPU	
•  Track	access	to	uniform	shared	memory	between	host	and	GPU	

ROCm	
•  Rocprofiler	and	Roctracer	instrumentation	interfaces	
•  Track	data	transfers	and	kernel	execution	between	host	and	GPU	

Python	
•  Python	interpreter	instrumentation	API	
•  Tracks	Python	routine	transitions	as	well	as	Python	to	C	transitions	
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Examples	of	Multi-Level	Instrumentation		

MPI	+	OpenMP	
•  MPI_T	+	PMPI	+	OMPT	may	be	used	to	track	MPI	and	OpenMP	

MPI	+	CUDA	
•  PMPI	+	CUPTI	interfaces		

OpenCL	+	ROCm	
•  Rocprofiler	+	OpenCL	instrumentation	interfaces	

Kokkos	+	OpenMP		
•  Kokkos	profiling	API	+	OMPT	to	transparently	track	events	

Kokkos	+	pthread	+	MPI		
•  Kokkos	+	pthread	wrapper	interposition	library	+	PMPI	layer	

Python	+	CUDA	
•  Python	+	CUPTI	+	pthread	profiling	interfaces	(e.g.,	Tensorflow,	PyTorch)	

MPI	+	OpenCL	
•  PMPI	+	OpenCL	profiling	interfaces	
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Simplifying the use of TAU! 
Uninstrumented code: 

•  % make 

•  % mpirun –np  256 ./a.out 

 
With TAU using event based sampling (EBS): 

•  % mpirun –np 256 tau_exec –ebs ./lu.B.64  

•  % paraprof           (GUI) 

•  % pprof –a | more 

NOTE: 

•  Requires dynamic executables (-dynamic link flag on Cray XC systems). 

•  Source code should be compiled with –g for access to symbol table. 

•  Kokkos support is on by default in tau_exec 
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TAU Execution Command (tau_exec) 
Uninstrumented execution 

•  % mpirun -np 256  ./a.out 
Track GPU operations 

•  % mpirun –np 256  tau_exec –rocm ./a.out 
•  % mpirun –np 256  tau_exec –cupti ./a.out 
•  % mpirun –np 256 tau_exec –opencl ./a.out 
•  % mpirun –np 256 tau_exec –openacc ./a.out  

Track MPI performance 
•  % mpirun -np 256   tau_exec ./a.out 

Track I/O, and MPI performance (MPI enabled by default) 
•  % mpirun -np 256  tau_exec -io  ./a.out 

Track OpenMP and MPI execution (using OMPT for Intel v19)  
•  % export TAU_OMPT_SUPPORT_LEVEL=full;  

% mpirun –np 256  tau_exec –T openmp,ompt,v5,mpi  -ompt  ./a.out 
Track memory operations 

•  % export TAU_TRACK_MEMORY_LEAKS=1 
•  % mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check) 

Use event based sampling (compile with –g) 
•  % mpirun –np 256 tau_exec –ebs ./a.out 
•  Also  -ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count> 

        -ebs_resolution=<file | function | line> 
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Kokkos API use in ExaMiniMD 
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pushRegion(“Comm::update_halo”) 

popRegion 

Kokkos::parallel_for 



ExaMiniMD: TAU Phase 
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Comm::update_halo phase in TAU ParaProf’s Thread Statistics Table 



ExaMiniMD: ParaProf Node Window 
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Event-based Sampling (EBS): CabanaMD 
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EBS with Kokkos API 



CabanaMD: CUDA Events 
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Jumpshot Trace Visualizer 
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Vampir [TU Dresden] Timeline Display 

20	

% export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2 
% mpirun –np 16 tau_exec ./a.out  
% vampir traces.otf2  



An API model for other runtimes? 

•  Kokkos	profiling	interface	is	very	elegant	
•  Kokkos	API	calls	are	defined	by	the	tools	
•  Kokkos	maintains	compatibility	between	its	releases	
•  No	need	for	a	header	file,	no	#defines,	type	names	
•  Additional	calls	may	be	added	to	the	API,	but	are	not	necessary	for	

an	older	version	of	the	tool	to	support	a	new	version	of	Kokkos	
•  No	need	for	tool	to	be	compiled	with	a	given	version	of	Kokkos	
•  At	startup,	if	KOKKOS_PROFILE_LBIRARY	environment	variable	is	

defined,	it		loads	the	library,	if	not,	profiling	calls	are	disabled	
•  Profiling	hooks	are	activated	by	loading	the	agent	library	
•  Hooks	may	be	disabled	during	configuration,	enabled	by	default	
•  Is	this	a	good	model	for	other	runtimes	to	adopt?	
•  Is	there	a	need	for	a	single	tool	to	provide	access	to	events	across	

different	runtimes/programming	models?		
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Download	TAU	

	
http://tau.uoregon.edu	

http://taucommander.com		
https://e4s.io		

[	E4S:	Extreme-Scale	Scientific	Software	Stack]	
For	more	info	on	E4S:	E4S	BoF,	Tues,	12:15pm,	Room	#405-407	

Free	download,	open	source,	BSD	license	
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Installing	and	Configuring	TAU	
• Installing	PDT:	

•  wget	tau.uoregon.edu/pdt_lite.tgz	
•  ./configure	–prefix=<dir>;	make	;	make	install	

• Installing	TAU:	
•  	wget	tau.uoregon.edu/tau.tgz;				tar	zxf	tau.tgz;	cd	tau-2.<ver>	
•  	wget	http://tau.uoregon.edu/ext.tgz	;	tar	xf	ext.tgz	
•  	./configure	-bfd=download	-pdt=<dir>		

-iowrapper	-mpi	–dwarf=download	–unwind=download	–
otf=download	–papi=<dir>	
make	install	

• Using	TAU:	
•  export	TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-

<TAGS>	
•  make	CC=tau_cc.sh			CXX=tau_cxx.sh			F90=tau_f90.sh	
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Compile-Time Options 
Optional parameters for the TAU_OPTIONS environment variable:  
% tau_compiler.sh 

-optVerbose   Turn on verbose debugging messages 
-optCompInst   Use compiler based instrumentation 
-optNoCompInst   Do not revert to compiler instrumentation if source  

   instrumentation fails. 
�-optTrackIO          Wrap POSIX I/O call and calculates vol/bw of I/O operations 

   (Requires TAU to be configured with –iowrapper) 
�-optTrackGOMP          Enable tracking GNU OpenMP runtime layer (used without –opari) 
�-optMemDbg          Enable runtime bounds checking (see TAU_MEMDBG_* env vars)  
-optKeepFiles          Does not remove intermediate .pdb and .inst.* files 
-optPreProcess          Preprocess sources (OpenMP, Fortran) before instrumentation 
-optTauSelectFile=”<file>"  Specify selective instrumentation file for tau_instrumentor 
-optTauWrapFile=”<file>"  Specify path to link_options.tau generated by tau_gen_wrapper 
-optHeaderInst    Enable Instrumentation of headers 
-optTrackUPCR         Track UPC runtime layer routines (used with tau_upc.sh) 
-optLinking=""         Options passed to the linker. Typically  

   $(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS) 
-optCompile=""         Options passed to the compiler. Typically  

   $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS) 
-optPdtF95Opts=""  Add options for Fortran parser in PDT (f95parse/gfparse) … 
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Compile-Time Options (contd.) 
Optional parameters for the TAU_OPTIONS environment variable:  
% tau_compiler.sh 

-optShared   Use TAU’s shared library (libTAU.so) instead of static library (default) 
�-optPdtCxxOpts=“”          Options for C++ parser in PDT (cxxparse).  
�-optPdtF90Parser=“”          Specify a different Fortran parser 
�-optPdtCleanscapeParser     Specify the Cleanscape Fortran parser instead of GNU gfparser 
-optTau=“”          Specify options to the tau_instrumentor 
-optTrackDMAPP  Enable instrumentation of low-level DMAPP API calls on Cray 
-optTrackPthread         Enable instrumentation of pthread calls 
 
See tau_compiler.sh for a full list of TAU_OPTIONS.  
 
 
 
… 
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Environment	Variable	 Default	 Description	

TAU_TRACE	 0	 Setting	to	1	turns	on	tracing	

TAU_CALLPATH	 0	 Setting	to	1	turns	on	callpath	profiling	

TAU_TRACK_MEMORY_FOO
TPRINT	

0	 Setting	to	1	turns	on	tracking	memory	usage	by	sampling	periodically	the	resident	set	size	
and	high	water	mark	of	memory	usage	

TAU_TRACK_POWER	 0	 Tracks	power	usage	by	sampling	periodically.		

TAU_CALLPATH_DEPTH	 2	 Specifies	depth	of	callpath.	Setting	to	0	generates	no	callpath	or	routine	information,	
setting	to	1	generates	flat	profile	and	context	events	have	just	parent	information	(e.g.,	
Heap	Entry:	foo)	

TAU_SAMPLING	 1	 Setting	to	1	enables	event-based	sampling.	

TAU_TRACK_SIGNALS	 0	 Setting	to	1	generate	debugging	callstack	info	when	a	program	crashes	

TAU_COMM_MATRIX	 0	 Setting	to	1	generates	communication	matrix	display	using	context	events	

TAU_THROTTLE	 1	 Setting	to	0	turns	off	throttling.	Throttles	instrumentation	in	lightweight	routines	that	are	
called	frequently	

TAU_THROTTLE_NUMCALLS	 100000	 Specifies	the	number	of	calls	before	testing	for	throttling	

TAU_THROTTLE_PERCALL	 10	 Specifies	value	in	microseconds.	Throttle	a	routine	if	it	is	called	over	100000	times	and	
takes	less	than	10	usec	of	inclusive	time	per	call	

TAU_CALLSITE	 0	 Setting	to	1	enables	callsite	profiling	that	shows	where	an	instrumented	function	was	
called.	Also	compatible	with	tracing.	

TAU_PROFILE_FORMAT	 Profile	 Setting	to	“merged”	generates	a	single	file.	“snapshot”	generates	xml	format	

TAU_METRICS	 TIME	 Setting	to	a	comma	separated	list	generates	other	metrics.	(e.g.,	
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)	

TAU’s	Runtime	Environment	Variables		
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Environment	Variable	 Default	 Description	

TAU_TRACE	 0	 Setting	to	1	turns	on	tracing	

TAU_TRACE_FORMAT	 Default	 Setting	to	“otf2”	turns	on	TAU’s	native	OTF2	trace	generation	(configure	with	–
otf=download)	

TAU_EBS_UNWIND	 0	 Setting	to	1	turns	on	unwinding	the	callstack	during	sampling	(use	with	tau_exec	–ebs	
or	TAU_SAMPLING=1)	

TAU_EBS_RESOLUTION	 line	 Setting	to	“function”	or	“file”	changes	the	sampling	resolution	to	function	or	file	level	
respectively.		

TAU_TRACK_LOAD	 0	 Setting	to	1	tracks	system	load	on	the	node	

TAU_SELECT_FILE	 Default	 Setting	to	a	file	name,	enables	selective	instrumentation	based	on	exclude/include	lists	
specified	in	the	file.	

TAU_OMPT_SUPPORT_LEVEL	 basic	 Setting	to	“full”	improves	resolution	of	OMPT	TR6	regions	on	threads	1..	N-1.	Also,	
“lowoverhead”	option	is	available.		

TAU_OMPT_RESOLVE_ADDRESS_
EAGERLY	

1	 Setting	to	1	is	necessary	for	event	based	sampling	to	resolve	addresses	with	OMPT.	
Setting	to	0	allows	the	user	to	do	offline	address	translation.		

Runtime Environment Variables 
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Environment	Variable	 Default	 Description	

TAU_TRACK_MEMORY_LEAKS	 0	 Tracks	allocates	that	were	not	de-allocated	(needs	–optMemDbg	or	tau_exec	
–memory)	

TAU_EBS_SOURCE	 TIME	 Allows	using	PAPI	hardware	counters	for	periodic	interrupts	for	EBS	(e.g.,	
TAU_EBS_SOURCE=PAPI_TOT_INS	when	TAU_SAMPLING=1)	

TAU_EBS_PERIOD	 100000	 Specifies	the	overflow	count	for	interrupts	

TAU_MEMDBG_ALLOC_MIN/MAX	 0	 Byte	size	minimum	and	maximum	subject	to	bounds	checking	(used	with	
TAU_MEMDBG_PROTECT_*)	

TAU_MEMDBG_OVERHEAD	 0	 Specifies	the	number	of	bytes	for	TAU’s	memory	overhead	for	memory	
debugging.		

TAU_MEMDBG_PROTECT_BELOW/
ABOVE	

0	 Setting	to	1	enables	tracking	runtime	bounds	checking	below	or	above	the	
array	bounds	(requires	–optMemDbg	while	building	or	tau_exec	–memory)	

TAU_MEMDBG_ZERO_MALLOC	 0	 Setting	to	1	enables	tracking	zero	byte	allocations	as	invalid	memory	
allocations.		

TAU_MEMDBG_PROTECT_FREE	 0	 Setting	to	1	detects	invalid	accesses	to	deallocated	memory	that	should	not	
be	referenced	until	it	is	reallocated	(requires	–optMemDbg	or	tau_exec	–
memory)	

TAU_MEMDBG_ATTEMPT_CONTINUE	 0	 Setting	to	1	allows	TAU	to	record	and	continue	execution	when	a	memory	
error	occurs	at	runtime.		

TAU_MEMDBG_FILL_GAP	 Undefined	 Initial	value	for	gap	bytes	

TAU_MEMDBG_ALINGMENT	 Sizeof(int)	 Byte	alignment	for	memory	allocations	

TAU_EVENT_THRESHOLD	 0.5	 Define	a	threshold	value	(e.g.,	.25	is	25%)	to	trigger	marker	events	for	min/
max	

Runtime	Environment	Variables	
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