
TAU Performance System®

13th Annual MVAPICH Users Group Meeting

2:30 pm – 3:00 pm ET, Monday, August 19th, 2025
The Ohio State University, Columbus, OH

Sameer Shende
Research Professor and Director,
Performance Research Laboratory, OACISS, University of Oregon
President and Director, ParaTools, Inc.
sameer@cs.uoregon.edu
https://tau.uoregon.edu/TAU_MUG25.pdf

2

Acknowledgments

• The MVAPICH team The Ohio State University

• http://mvapich.cse.ohio-state.edu

• TAU team at the University of Oregon

• http://tau.uoregon.edu

3

Motivation and Challenges

• With growing hardware complexity, it is getting harder to accurately measure and optimize the
performance of our HPC and AI/ML workloads.

• TAU Performance System®:

– Deliver a scalable, portable, performance evaluation toolkit for HPC and AI/ML workloads.

– http://tau.uoregon.edu

• It is getting harder to install our HPC and AI/ML tools.

http://tau.uoregon.edu/
http://tau.uoregon.edu/

4

Motivation: Improving Productivity

• TAU Performance System®:

– Deliver a scalable, portable, performance evaluation toolkit for HPC and
AI/ML workloads

– http://tau.uoregon.edu

5

TAU Performance System
®

• Tuning and Analysis Utilities (25+ year project)

• Comprehensive performance profiling and tracing

• Integrated, scalable, flexible, portable

• Targets all parallel programming/execution paradigms

• Integrated performance toolkit
• Instrumentation, measurement, analysis, visualization

• Widely-ported performance profiling / tracing system

• Performance data management and data mining

• Open source (BSD-style license)

• Uses performance and control variables to interface with MVAPICH2

• Integrates with application frameworks

• http://tau.uoregon.edu

6

TAU Performance System®

• Versatile profiling and tracing toolkit that supports:

– MPI, CUDA, ROCm, DPC++/SYCL (Level Zero), OpenCL, and
OpenMP (OpenMP Tools Interface for Target Offload)

• Scalable, portable, performance evaluation toolkit for HPC and AI/ML workloads that supports:

– C++/C/DPC++, Fortran, Python

• Supports PAPI, Likwid for hardware performance counter information

• Instrumentation includes support for PETSc (Perfstubs), GPTL, PhiProf, XGC (CAMTIMERS),
Kokkos, MPI, pthread, event-based sampling, GPU runtimes

• A single tool (tau_exec) is used to launch un-instrumented, un-modified binaries

• Supports Grace-Grace and Grace-Hopper (SVE aarch64) systems

• TAU’s paraprof, pprof, perfexplorer for profile analysis; Vampir, Jumpshot, Perfetto.dev for traces

• http://tau.uoregon.edu

https://tau.uoregon.edu/
https://tau.uoregon.edu/

7

• How much time is spent in each application routine and outer loops? Within loops, what is the

contribution of each statement? What is the time spent in OpenMP loops? In kernels on

GPUs.

• How many instructions are executed in these code regions?

Floating point, Level 1 and 2 data cache misses, hits, branches taken? What is the extent of

vectorization for loops?

• How much time did my application spend waiting at a barrier in MPI collective operations?

• What is the memory usage of the code? When and where is memory allocated/de-allocated?

Are there any memory leaks? What is the memory footprint of the application? What is the

memory high water mark?

• How much energy does the application use in Joules? What is the peak power usage?

• What are the I/O characteristics of the code? What is the peak read and write bandwidth of

individual calls, total volume?

• How does the application scale? What is the efficiency, runtime breakdown of performance

across different core counts?

Application Performance Engineering

using TAU

8

Profiling:

MPI: % mpirun -np 16 tau_exec -ebs ./a.out

• Pthread: % mpirun -np 16 tau_exec –T mpi,pthread –ebs ./a.out

• CUDA: % mpirun –np 16 tau_exec –T cupti,mpi –cupti -ebs ./a.out

• ROCm: % mpirun -np 16 tau_exec –T rocm,mpi –rocm -ebs ./a.out

• Python: % tau_python ./foo.py

Analysis: % pprof –a –m | more; % paraprof (GUI)

Tracing:

• Vampir: MPI: % export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

% mpirun -np 16 tau_exec ./a.out; vampir traces.otf2 &

• Chrome/Jumpshot: % export TAU_TRACE=1; mpirun -np 64 tau_exec ./a.out

% tau_treemerge.pl;

Perfetto.dev:% tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing (Load -> app.json) or Perfetto.dev

• Jumpshot: tau2slog2 tau.trc tau.edf –o app.slog2; jumpshot app.slog2

TAU: Quickstart Guide

9

TAU Performance System®

Parallel performance framework and toolkit
Supports all HPC platforms, compilers, runtime system
Provides portable instrumentation, measurement, analysis

10

TAU Performance System®

Instrumentation

• Fortran, C++, C, UPC, Java, Python, Chapel, Spark

• Automatic instrumentation

Measurement and analysis support

• MPI (MVAPICH), OpenSHMEM, ARMCI, PGAS, DMAPP

• Supports Intel oneAPI compilers

• pthreads, OpenMP, OMPT interface, hybrid, other thread models

• GPU: OpenCL, oneAPI DPC++/SYCL (Level Zero), OpenACC, Kokkos, RAJA

• Parallel profiling and tracing

Analysis

• Parallel profile analysis (ParaProf), data mining (PerfExplorer)

• Performance database technology (TAUdb)

• 3D profile browser

11

Instrumentation

• Source instrumentation using a preprocessor

– Add timer start/stop calls in a copy of the source code.

– Use Program Database Toolkit (PDT) for parsing source code.

– Requires recompiling the code using TAU shell scripts (tau_cc.sh, tau_f90.sh)

– Selective instrumentation (filter file) can reduce runtime overhead and narrow instrumentation
focus.

• Compiler-based instrumentation

– Use system compiler to add a special flag to insert hooks at routine entry/exit.

– Requires recompiling using TAU compiler scripts (tau_cc.sh, tau_f90.sh…)

• Runtime preloading of TAU’s Dynamic Shared Object (DSO)

– No need to recompile code! Use mpirun tau_exec ./app with options.

Add hooks in the code to perform measurements

12

TAU’s Support for Runtime Systems

• MPI

• PMPI profiling interface

• MPI_T tools interface using performance and control variables

• MPI Collective Sync time: time in an implicit barrier in MPI collective operations

• Pthread

• Captures time spent in routines per thread of execution

• OpenMP

• OMPT tools interface to track salient OpenMP runtime events

• Opari source rewriter

• Preloading wrapper OpenMP runtime library when OMPT is not supported

• Intel Level Zero

• Captures time spent in kernels on GPUs using oneAPI Level Zero

• Captures time spent in Intel Level Zero runtime calls

• OpenACC

• OpenACC instrumentation API

• Track data transfers between host and device (per-variable)

• Track time spent in kernels

13

TAU’s Support for Runtime Systems (contd.)

• OpenCL

• OpenCL profiling interface

• Track timings of kernels

• CUDA

• Cuda Profiling Tools Interface (CUPTI)

• Track data transfers between host and GPU

• Track access to uniform shared memory between host and GPU

• ROCm

• Rocprofiler and Roctracer instrumentation interfaces

• Track data transfers and kernel execution between host and GPU

• Kokkos

• Kokkos profiling API

• Push/pop interface for region, kernel execution interface

• Python

• Python interpreter instrumentation API

• Tracks Python routine transitions as well as Python to C transitions

14

Examples of Multi-Level Instrumentation

MPI + OpenMP

MPI_T + PMPI + OMPT may be used to track MPI and OpenMP

MPI + CUDA

PMPI + CUPTI interfaces

OpenCL + ROCm

Rocprofiler + OpenCL instrumentation interfaces

Kokkos + OpenMP

Kokkos profiling API + OMPT to transparently track events

Kokkos + pthread + MPI

Kokkos + pthread wrapper interposition library + PMPI layer

Python + CUDA

Python + CUPTI + pthread profiling interfaces (e.g., Tensorflow,

PyTorch)

MPI + OpenCL

PMPI + OpenCL profiling interfaces

15

Using TAU’s Runtime Preloading Tool: tau_exec

Preload a wrapper that intercepts the runtime system call and substitutes with another

MPI

OpenMP

POSIX I/O

Memory allocation/deallocation routines

Wrapper library for an external package

No modification to the binary executable!

Enable other TAU options (communication matrix, OTF2, event-based sampling)

16

TAU Execution Command (tau_exec)
Uninstrumented execution

% mpirun -np 256 ./a.out

Track GPU operations

% mpirun -np 256 tau_exec –rocm ./a.out (-rocm_pc for PC sampling on GPU)
% mpirun -np 256 tau_exec –cupti ./a.out
% mpirun -np 256 tau_exec –cupti -um ./a.out (for Unified Memory) (-cupti_pc for PC sampling on GPU)
% mpirun –np 256 tau_exec –l0 ./a.out

% mpirun –np 256 tau_exec –opencl ./a.out

% mpirun –np 256 tau_exec –openacc ./a.out

Track MPI performance

% mpirun -np 256 tau_exec ./a.out

Track I/O, and MPI performance (MPI enabled by default)

% mpirun -np 256 tau_exec -io ./a.out

Track OpenMP and MPI execution (using OMPT for Intel v19+ or Clang 8+)

% export TAU_OMPT_SUPPORT_LEVEL=full;

% mpirun –np 256 tau_exec –T ompt,mpi -ompt ./a.out

Track memory operations

% export TAU_TRACK_MEMORY_LEAKS=1

% mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check)

Use event based sampling (compile with –g)

% mpirun –np 256 tau_exec –ebs ./a.out

Also export TAU_METRICS=TIME,PAPI_L1_DCM… -ebs_resolution=<file | function | line>

17

Integrating TAU with MVAPICH through MPI_T Interface

● Enhance existing support for MPI_T in

MVAPICH2 to expose a richer set of

performance and control variables

● Get and display MPI Performance

Variables (PVARs) made available by

the runtime in TAU

● Control the runtime’s behavior via MPI

Control Variables (CVARs)

● Add support to MVAPICH2 and TAU

for interactive performance

engineering sessions

18

TAU Performance Measurement Model

enter/exit events

are “interval” events (in shared memory)

application-wide

performance data

19

TAU Plugin Architecture

Extend TAU event interface for plugins
Events: interval, atomic

Specialized on event ID

Synchronous operation

Create TAU interface for trigger plugins
Named trigger

Pass application data
Synchronous

Asynchronous using agent plugin

20

Plugin-based Infrastructure for Non-Interactive Tuning

• TAU supports a fully-customizable plugin

infrastructure based on callback event

handler registration for salient states inside

TAU:

Function Registration / Entry / Exit

Phase Entry / Exit

Atomic Event Registration / Trigger

Init / Finalize Profiling

Interrupt Handler

MPI_T

• Application can define its own “trigger” states

and associated plugins

Pass arbitrary data to trigger state plugins

21

TAU Runtime Control of Plugin

• TAU defines a plugin API to deliver access control to the

internal plugin map

• User can specify a regular expression to control plugins

executed for a class of named states at runtime

Access to map on a process is serialized: application is

expected to access map through main thread

22

TAU Customization

• TAU states can be named or generic

• TAU distinguishes named states in a way that allows for separation of occurrence of a

state from the action associated with it

Function entry for “foo” and “bar” represent distinguishable states in TAU

• TAU maintains an internal map of a list of plugins associated with each state

23

PVARs Exposed by MVAPICH2

24

CVARs Exposed by MVAPICH2

25

Using MVAPICH2 and TAU with Multiple CVARs

• To set CVARs or read PVARs using TAU for an uninstrumented binary:

% export TAU_TRACK_MPI_T_PVARS=1

% export TAU_MPI_T_CVAR_METRICS=

MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1],

MPIR_CVAR_IBA_EAGER_THRESHOLD

% export TAU_MPI_T_CVAR_VALUES=32,64000

% export PATH=/path/to/tau/x86_64/bin:$PATH

% mpirun -np 1024 tau_exec -T mvapich,mpit ./a.out

% paraprof

26

MPI Collective Sync in TAU: Time wasted in barrier

27

MPI Collective Sync in TAU: Time wasted in an implicit barrier

28

HeFFTe: Comparing collective sync time with TAU’s comparison window

29

MPI Collective Sync in TAU: Time wasted in an implicit barrier

30

AWP-ODC: Callsite location of MPI Collective Sync

export TAU_CALLSITE=1; aprun –n 64 tau_exec ./a.out

31

AWP-ODC: Tracing with TAU and Perfetto.dev

32

Binary instrumentation of libraries: Work in progress

% tau_run a.out –o a.inst

instruments a binary. Other flags –T <tags>, -f <selective instrumentation file>
% tau_run -l /path/to/libhdf5.so.310 –o libhdf5.so.310

instruments a DSO
% tau_exec ./a.out

executes the uninstrumented application with the instrumented shared object.

To use with DyninstAPI 13 on x86_64:
1. Load spack: source spack/share/spack/setup-env.sh
2. Install dyninst: spack install dyninst@13 %gcc@11
3. Configure tau with dyninst:

3.1 spack find -p dyninst boost tbb elfutils
3.2 Copy the paths for each package into the configure line

3.3 ./configure -bfd=download -dyninst=<dir> -tbb=<dir> -boost=<dir> -elf=<dir>; <set paths>; make install
With AMD GPUs:
./configure -bfd=download -mpi -rocm=/opt/rocm-6.0.0 -rocprofiler=/opt/rocm-6.0.0 -dyninst=download; make install

33

Binary instrumentation of libraries: HDF5

34

AWP-ODC [UCSD]: TAU+CUPTI+DyninstAPI

35

Profiling and Tracing

• Tracing shows you when the events take

place on a timeline

Profiling Tracing

• Profiling shows you how much

(total) time was spent in each routine

• Profiling and tracing

Profiling shows you how much (total) time was spent in each routine

Tracing shows you when the events take place on a timeline

36

Inclusive vs. Exclusive values
■ Inclusive

■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

Inclusive Exclusive

int foo()
{
int a;
a = 1 + 1;

bar();

a = a + 1;
return a;

}

37

How much data do you want?

Limited

Profile

Flat

Profile

Loop

Profile

Callsite

Profile

Callpath

Profile

Trace

O(KB) O(TB)

38

Types of Performance Profiles

• Flat profiles
• Metric (e.g., time) spent in an event

• Exclusive/inclusive, # of calls, child calls, …

• Callpath profiles
• Time spent along a calling path (edges in callgraph)

• “main=> f1 => f2 => MPI_Send”

• Set the TAU_CALLPATH and TAU_CALLPATH_DEPTH environment variables

• Callsite profiles
• Time spent along in an event at a given source location

• Set the TAU_CALLSITE environment variable

• Phase profiles
• Flat profiles under a phase (nested phases allowed)

• Default “main” phase

• Supports static or dynamic (e.g. per-iteration) phases

39

Performance Data Measurement

Direct via Probes Indirect via Sampling

• Exact

measurement

• Fine-grain control

• Calls inserted

into code

• No code modification

• Minimal effort

• Relies on debug

symbols (-g)

Call START(‘potential’)

// code

Call STOP(‘potential’)

40

Sampling

Running program is periodically interrupted to take

measurement

Timer interrupt, OS signal, or HWC overflow

Service routine examines return-address stack

Addresses are mapped to routines using symbol

table information

Statistical inference of program behavior

Not very detailed information on highly volatile

metrics

Requires long-running applications

Works with unmodified executables

Time

main foo(0) foo(1) foo(2) int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Measurement

t9t7t6t5t4t1 t2 t3 t8

41

Instrumentation

Measurement code is inserted such that every event of

interest is captured directly

Can be done in various ways

Advantage:

Much more detailed information

Disadvantage:

Processing of source-code / executable

necessary

Large relative overheads for small functions

Time

Measurement int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12t13 t14

main foo(0) foo(1) foo(2)

TAU_START(“main”);

TAU_STOP(“main”);

TAU_START(“foo”);

TAU_STOP(“foo”);

42

Inclusive Measurements

43

Exclusive Time

44

Tracing: Jumpshot (ships with TAU)

45

Tracing: Chrome Browser

% export TAU_TRACE=1

% mpirun –np 256 tau_exec ./a.out
% tau_treemerge.pl; tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing (Load -> app.json)

46

Visualizing Traces with https://Perfetto.dev

wasd
W = widen
S = Shrink
A = Left
D = Right

47

Vampir [TU Dresden] Timeline: Kokkos

% export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

% tau_exec -T ompt –ompt ./a.out
% vampir traces.otf2 &

48

ParaProf Profile Browser

% paraprof

49

ParaProf 3D Profile Browser

50

TAU – ParaProf 3D Visualization

% paraprof app.ppk

Windows -> 3D Visualization -> Bar Plot (right pane)

51

TAU – 3D Communication Window

% export TAU_COMM_MATRIX=1; mpirun … tau_exec ./a.out

% paraprof ; Windows -> 3D Communication Matrix

52

Event Based Sampling (EBS)

% mpirun -n 16 tau_exec –ebs a.out

Uninstrumented!

File: point_solver.F90

Line: 2705

53

Using ParaTools Pro for E4STM image on AWS with Heidi AI/ODDC

Login to:
https://paratools.adaptivecomputing.com

with the credentials. Firefox private window

recommended.

Click on Student tab and use code:70034

https://paratools.adaptivecomputing.com/

54

Connect to https://paratools.adaptivecomputing.com

• Use Student tab and enter name, email, session code 70034

55

Connect to https://paratools.adaptivecomputing.com

• Check your email, enter verification code.

56

Connect to https://paratools.adaptivecomputing.com

• Click cluster

57

Connect to https://paratools.adaptivecomputing.com

• Click Remote Desktop

58

Connect to https://paratools.adaptivecomputing.com

• You may have to enable pop-up windows and accept

59

Connect to Students tab with code 70034 at
https://paratools.adaptivecomputing.com

• You should see this jellyfish. Click on Activities.

To copy text from

other windows
click on the
this button to

access the
clipboard

60

Connect to https://paratools.adaptivecomputing.com

• Click on Activities, nine dots, and then select the Terminal application

61

To increase font size right click and choose preferences

62

Choose font size after clicking
Custom Font for Terminal

63

Running your first MPI application on the allocated cluster

% cd ~/examples/mpi-procname

% ./compile.sh

% ./run-single-node.sh # on the login node

% cat mpiprocname.qsub

% qsub mpiprocname.qsub

% qstat –u $USER

% cat mpiprocname.o*

% cd ~/examples/osu-benchmarks

% cat bw.qsub

% qsub bw.qsub

% cat bw.o* # How close did you get to 50Gbps? At what message size? Multiply MB/s x 8 …

64

Launching the binary using tau_exec –ebs

cd ~/examples/petsc-cpu
vi ex50.qsub

Add tau_exec –ebs
before ./ex50 in the launch
command. Save the file.

65

TAU’s ParaProf Profile Browser: Source Code Browser

qsub ex50.qsub

qstat –u $USER

After it completes

ls

paraprof &

66

TAU’s paraprof browser with PETSc performance profile

paraprof

Choose
Show thread statistics table by
right clicking on
node 0, thread 0.

67

Using pprof: TAU’s text based profile browser

pprof –a | more

Here we see PETSc timers
translated into TAU timers using
the Perfstubs library.

No modification to the source,
build system, or the binary!

68

CoMD: TAU with event-based sampling (EBS)

% cd examples/CoMD/src-mpi

% make; cd ../bin

69

CoMD: TAU with event-based sampling (EBS)

Without TAU:

% qsub comd.qsub

With TAU:

% qsub tau.qsub

% qstat –u $USER

Also see
../petsc-cuda

70

CoMD: TAU’s paraprof visualizer

% paraprof &

71

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOO
TPRINT

0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size
and high water mark of memory usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically.

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information,
setting to 1 generates flat profile and context events have just parent information (e.g.,
Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are
called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and
takes less than 10 usec of inclusive time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was
called. Also compatible with tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

TAU’s Runtime Environment Variables

72

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –
otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs
or TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level
respectively.

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include
lists specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also,
“lowoverhead” option is available.

TAU_OMPT_RESOLVE_ADDRESS_
EAGERLY

1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT.
Setting to 0 allows the user to do offline address translation.

Runtime Environment Variables

73

Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec
–memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g.,
TAU_EBS_SOURCE=PAPI_TOT_INS when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with
TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory
debugging.

TAU_MEMDBG_PROTECT_BELOW/AB
OVE

0 Setting to 1 enables tracking runtime bounds checking below or above the
array bounds (requires –optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory
allocations.

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not
be referenced until it is reallocated (requires –optMemDbg or tau_exec –
memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory
error occurs at runtime.

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for
min/max

Runtime Environment Variables

74

Download TAU from U. Oregon

http://tau.uoregon.edu

https://e4s.io [TAU in Docker/Singularity containers]

for more information

Free download, open source, BSD license

http://tau.uoregon.edu/
https://e4s.io/

75

Performance Research Laboratory,

University of Oregon, Eugene

www.uoregon.edu

http://www.uoregon.edu/

76

• US Department of Energy (DOE)

– ANL

– Office of Science contracts, ECP

– SciDAC, LBL contracts

– LLNL-LANL-SNL ASC/NNSA contract

– Battelle, PNNL and ORNL contract

• Department of Defense (DoD)

– PETTT, HPCMP

• National Science Foundation (NSF)

– SI2-SSI, Glassbox, E4S Workshop

• NASA

• Intel, NVIDIA, AMD, IBM

• CEA, France

• Partners:

–University of Oregon

–The Ohio State University

–ParaTools, Inc.

–University of Tennessee, Knoxville

–T.U. Dresden, GWT

–Jülich Supercomputing Center

Support Acknowledgements

77

Acknowledgment

• This work was supported by the U.S. Department of Energy, Office of Science, Advanced

Computing Research, through the Next-Generation Scientific Software Technologies (NGSST)

under contract DE-AC02-AC05-00OR22725, DOE SBIR DE-SC0022502, and NNSA Sandia

contract 2542488.

• https://science.osti.gov/ascr

• https://pesoproject.org

• https://ascr-step.org

• https://hpsf.io

• https://www.energy.gov/technologytransitions/sbirsttr

https://science.osti.gov/ascr
https://science.osti.gov/ascr
https://pesoproject.org/
https://pesoproject.org/
https://ascr-step.org/
https://ascr-step.org/
https://ascr-step.org/
https://ascr-step.org/
https://hpsf.io/
https://hpsf.io/
https://www.energy.gov/technologytransitions/sbirsttr
https://www.energy.gov/technologytransitions/sbirsttr

78

Thank you

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of

the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,

responsible for delivering a capable exascale ecosystem, including software, applications, and

hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The

work discussed in this presentation represents creative contributions of many people who are

passionately working toward next-generation computational science.

https://www.exascaleproject.org

https://www.exascaleproject.org/

79

	Slide 1: TAU Performance System®
	Slide 2: Acknowledgments
	Slide 3: Motivation and Challenges
	Slide 4: Motivation: Improving Productivity
	Slide 5: TAU Performance System®
	Slide 6: TAU Performance System®
	Slide 7: Application Performance Engineering using TAU
	Slide 8: TAU: Quickstart Guide
	Slide 9: TAU Performance System®
	Slide 10: TAU Performance System®
	Slide 11: Instrumentation
	Slide 12: TAU’s Support for Runtime Systems
	Slide 13: TAU’s Support for Runtime Systems (contd.)
	Slide 14: Examples of Multi-Level Instrumentation
	Slide 15: Using TAU’s Runtime Preloading Tool: tau_exec
	Slide 16: TAU Execution Command (tau_exec)
	Slide 17: Integrating TAU with MVAPICH through MPI_T Interface
	Slide 18: TAU Performance Measurement Model
	Slide 19: TAU Plugin Architecture
	Slide 20: Plugin-based Infrastructure for Non-Interactive Tuning
	Slide 21: TAU Runtime Control of Plugin
	Slide 22: TAU Customization
	Slide 23: PVARs Exposed by MVAPICH2
	Slide 24: CVARs Exposed by MVAPICH2
	Slide 25: Using MVAPICH2 and TAU with Multiple CVARs
	Slide 26: MPI Collective Sync in TAU: Time wasted in barrier
	Slide 27: MPI Collective Sync in TAU: Time wasted in an implicit barrier
	Slide 28: HeFFTe: Comparing collective sync time with TAU’s comparison window
	Slide 29: MPI Collective Sync in TAU: Time wasted in an implicit barrier
	Slide 30: AWP-ODC: Callsite location of MPI Collective Sync
	Slide 31: AWP-ODC: Tracing with TAU and Perfetto.dev
	Slide 32: Binary instrumentation of libraries: Work in progress
	Slide 33: Binary instrumentation of libraries: HDF5
	Slide 34: AWP-ODC [UCSD]: TAU+CUPTI+DyninstAPI
	Slide 35: Profiling and Tracing
	Slide 36: Inclusive vs. Exclusive values
	Slide 37: How much data do you want?
	Slide 38: Types of Performance Profiles
	Slide 39: Performance Data Measurement
	Slide 40: Sampling
	Slide 41: Instrumentation
	Slide 42: Inclusive Measurements
	Slide 43: Exclusive Time
	Slide 44: Tracing: Jumpshot (ships with TAU)
	Slide 45: Tracing: Chrome Browser
	Slide 46: Visualizing Traces with https://Perfetto.dev
	Slide 47: Vampir [TU Dresden] Timeline: Kokkos
	Slide 48: ParaProf Profile Browser
	Slide 49: ParaProf 3D Profile Browser
	Slide 50: TAU – ParaProf 3D Visualization
	Slide 51: TAU – 3D Communication Window
	Slide 52: Event Based Sampling (EBS)
	Slide 53: Using ParaTools Pro for E4STM image on AWS with Heidi AI/ODDC
	Slide 54: Connect to https://paratools.adaptivecomputing.com
	Slide 55: Connect to https://paratools.adaptivecomputing.com
	Slide 56: Connect to https://paratools.adaptivecomputing.com
	Slide 57: Connect to https://paratools.adaptivecomputing.com
	Slide 58: Connect to https://paratools.adaptivecomputing.com
	Slide 59: Connect to Students tab with code 70034 at https://paratools.adaptivecomputing.com
	Slide 60: Connect to https://paratools.adaptivecomputing.com
	Slide 61: To increase font size right click and choose preferences
	Slide 62: Choose font size after clicking Custom Font for Terminal
	Slide 63: Running your first MPI application on the allocated cluster
	Slide 64: Launching the binary using tau_exec –ebs
	Slide 65: TAU’s ParaProf Profile Browser: Source Code Browser
	Slide 66: TAU’s paraprof browser with PETSc performance profile
	Slide 67: Using pprof: TAU’s text based profile browser
	Slide 68: CoMD: TAU with event-based sampling (EBS)
	Slide 69: CoMD: TAU with event-based sampling (EBS)
	Slide 70: CoMD: TAU’s paraprof visualizer
	Slide 71: TAU’s Runtime Environment Variables
	Slide 72: Runtime Environment Variables
	Slide 73: Runtime Environment Variables
	Slide 74
	Slide 75: Performance Research Laboratory, University of Oregon, Eugene
	Slide 76: Support Acknowledgements
	Slide 77: Acknowledgment
	Slide 78: Thank you
	Slide 79

