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Motivation and Challenges

• With growing hardware complexity, it is getting harder to accurately measure and optimize the 
performance of our HPC and AI/ML workloads.

• TAU Performance System®: 

– Deliver a scalable, portable, performance evaluation toolkit for HPC and AI/ML workloads.

– http://tau.uoregon.edu

• It is getting harder to install our HPC and AI/ML tools. 

http://tau.uoregon.edu/
http://tau.uoregon.edu/


4

Motivation: Improving Productivity

• TAU Performance System®: 

– Deliver a scalable, portable, performance evaluation toolkit for HPC and 
AI/ML workloads

– http://tau.uoregon.edu
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TAU Performance System
®

• Tuning and Analysis Utilities (25+ year project)

• Comprehensive performance profiling and tracing

• Integrated, scalable, flexible, portable

• Targets all parallel programming/execution paradigms

• Integrated performance toolkit
• Instrumentation, measurement, analysis, visualization

• Widely-ported performance profiling / tracing system

• Performance data management and data mining

• Open source (BSD-style license)

• Uses performance and control variables to interface with MVAPICH2

• Integrates with application frameworks

• http://tau.uoregon.edu
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TAU Performance System®

• Versatile profiling and tracing toolkit that supports: 

– MPI, CUDA, ROCm, DPC++/SYCL (Level Zero), OpenCL, and 
OpenMP (OpenMP Tools Interface for Target Offload)

• Scalable, portable, performance evaluation toolkit for HPC and AI/ML workloads that supports:

– C++/C/DPC++, Fortran, Python

• Supports PAPI, Likwid for hardware performance counter information

• Instrumentation includes support for PETSc (Perfstubs), GPTL, PhiProf, XGC (CAMTIMERS), 
Kokkos, MPI, pthread, event-based sampling, GPU runtimes

• A single tool (tau_exec) is used to launch un-instrumented, un-modified binaries

• Supports Grace-Grace and Grace-Hopper (SVE aarch64) systems

• TAU’s paraprof, pprof, perfexplorer for profile analysis; Vampir, Jumpshot, Perfetto.dev for traces

• http://tau.uoregon.edu

https://tau.uoregon.edu/
https://tau.uoregon.edu/
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• How much time is spent in each application routine and outer loops? Within loops, what is the 

contribution of each statement? What is the time spent in OpenMP loops? In kernels on 

GPUs. 

• How many instructions are executed in these code regions?  

Floating point, Level 1 and 2 data cache misses, hits, branches taken? What is the extent of 

vectorization for loops? 

• How much time did my application spend waiting at a barrier in MPI collective operations?

• What is the memory usage of the code? When and where is memory allocated/de-allocated? 

Are there any memory leaks? What is the memory footprint of the application? What is the 

memory high water mark?

• How much energy does the application use in Joules? What is the peak power usage? 

• What are the I/O characteristics of the code?  What is the peak read and write bandwidth of 

individual calls, total volume? 

• How does the application scale? What is the efficiency, runtime breakdown of performance 

across different core counts? 

Application Performance Engineering 

using TAU 
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Profiling:

MPI: % mpirun -np 16 tau_exec -ebs ./a.out

• Pthread:    % mpirun -np  16 tau_exec –T mpi,pthread –ebs ./a.out

• CUDA: % mpirun –np 16 tau_exec –T cupti,mpi –cupti -ebs ./a.out

• ROCm: % mpirun -np 16 tau_exec –T rocm,mpi –rocm -ebs ./a.out

• Python: % tau_python ./foo.py

Analysis: % pprof –a –m | more;  % paraprof (GUI)

Tracing:

• Vampir: MPI: % export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

% mpirun -np  16 tau_exec ./a.out; vampir traces.otf2 &

• Chrome/Jumpshot: % export TAU_TRACE=1; mpirun -np  64 tau_exec ./a.out

% tau_treemerge.pl; 

Perfetto.dev:% tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing   (Load -> app.json) or Perfetto.dev

• Jumpshot: tau2slog2 tau.trc tau.edf –o app.slog2; jumpshot app.slog2

TAU: Quickstart Guide
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TAU Performance System®

Parallel performance framework and toolkit
Supports all HPC platforms, compilers, runtime system
Provides portable instrumentation, measurement, analysis
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TAU Performance System®

Instrumentation

• Fortran, C++, C, UPC, Java, Python, Chapel, Spark

• Automatic instrumentation

Measurement and analysis support

• MPI (MVAPICH), OpenSHMEM, ARMCI, PGAS, DMAPP

• Supports Intel oneAPI compilers

• pthreads, OpenMP, OMPT interface, hybrid, other thread models

• GPU: OpenCL, oneAPI DPC++/SYCL (Level Zero), OpenACC, Kokkos, RAJA

• Parallel profiling and tracing

Analysis

• Parallel profile analysis (ParaProf), data mining (PerfExplorer)

• Performance database technology (TAUdb)

• 3D profile browser
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Instrumentation

• Source instrumentation using a preprocessor

– Add timer start/stop calls in a copy of the source code.

– Use Program Database Toolkit (PDT) for parsing source code.

– Requires recompiling the code using TAU shell scripts (tau_cc.sh, tau_f90.sh)

– Selective instrumentation (filter file) can reduce runtime overhead and  narrow instrumentation 
focus. 

• Compiler-based instrumentation

– Use system compiler to add a special flag to insert hooks at routine entry/exit.

– Requires recompiling using TAU compiler scripts (tau_cc.sh, tau_f90.sh…)

• Runtime preloading of TAU’s Dynamic Shared Object (DSO) 

– No need to recompile code! Use mpirun tau_exec ./app  with options.

Add hooks in the code to perform measurements
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TAU’s Support for Runtime Systems

• MPI

• PMPI profiling interface

• MPI_T tools interface using performance and control variables

• MPI Collective Sync time: time in an implicit barrier in MPI collective operations

• Pthread

• Captures time spent in routines per thread of execution

• OpenMP

• OMPT tools interface to track salient OpenMP runtime events

• Opari source rewriter

• Preloading wrapper OpenMP runtime library when OMPT is not supported

• Intel Level Zero

• Captures time spent in kernels on GPUs using oneAPI Level Zero

• Captures time spent in Intel Level Zero runtime calls 

• OpenACC

• OpenACC instrumentation API

• Track data transfers between host and device (per-variable)

• Track time spent in kernels 
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TAU’s Support for Runtime Systems (contd.)

• OpenCL

• OpenCL profiling interface

• Track timings of kernels

• CUDA

• Cuda Profiling Tools Interface (CUPTI)

• Track data transfers between host and GPU

• Track access to uniform shared memory between host and GPU

• ROCm

• Rocprofiler and Roctracer instrumentation interfaces

• Track data transfers and kernel execution between host and GPU

• Kokkos

• Kokkos profiling API

• Push/pop interface for region, kernel execution interface

• Python

• Python interpreter instrumentation API

• Tracks Python routine transitions as well as Python to C transitions
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Examples of Multi-Level Instrumentation 

MPI + OpenMP

MPI_T + PMPI + OMPT may be used to track MPI and OpenMP

MPI + CUDA

PMPI + CUPTI interfaces 

OpenCL + ROCm

Rocprofiler + OpenCL instrumentation interfaces

Kokkos + OpenMP

Kokkos profiling API + OMPT to transparently track events

Kokkos + pthread + MPI 

Kokkos + pthread wrapper interposition library + PMPI layer

Python + CUDA

Python + CUPTI + pthread profiling interfaces (e.g., Tensorflow, 

PyTorch)

MPI + OpenCL

PMPI + OpenCL profiling interfaces
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Using TAU’s Runtime Preloading Tool: tau_exec

Preload a wrapper that intercepts the runtime system call and substitutes with another

MPI

OpenMP

POSIX I/O

Memory allocation/deallocation routines

Wrapper library for an external package

No modification to the binary executable!

Enable other TAU options (communication matrix, OTF2, event-based sampling)
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TAU Execution Command (tau_exec)
Uninstrumented execution

% mpirun -np 256  ./a.out

Track GPU operations

% mpirun -np 256  tau_exec –rocm ./a.out (-rocm_pc for PC sampling on GPU)
% mpirun -np 256  tau_exec –cupti ./a.out
% mpirun -np 256  tau_exec –cupti -um ./a.out (for Unified Memory) (-cupti_pc for PC sampling on GPU)
% mpirun –np 256  tau_exec –l0      ./a.out

% mpirun –np 256 tau_exec –opencl ./a.out

% mpirun –np 256 tau_exec –openacc ./a.out

Track MPI performance

% mpirun -np 256   tau_exec ./a.out

Track I/O, and MPI performance (MPI enabled by default)

% mpirun -np 256  tau_exec -io ./a.out

Track OpenMP and MPI execution (using OMPT for Intel v19+ or Clang 8+)

% export TAU_OMPT_SUPPORT_LEVEL=full; 

% mpirun –np 256  tau_exec –T ompt,mpi -ompt ./a.out

Track memory operations

% export TAU_TRACK_MEMORY_LEAKS=1

% mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check)

Use event based sampling (compile with –g)

% mpirun –np 256 tau_exec –ebs ./a.out

Also  export TAU_METRICS=TIME,PAPI_L1_DCM…  -ebs_resolution=<file | function | line>
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Integrating TAU with MVAPICH through MPI_T Interface

● Enhance existing support for MPI_T in 

MVAPICH2 to expose a richer set of 

performance and control variables

● Get and display MPI Performance 

Variables (PVARs) made available by 

the runtime in TAU

● Control the runtime’s behavior via MPI 

Control Variables (CVARs)

● Add support to MVAPICH2 and TAU 

for interactive performance 

engineering sessions
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TAU Performance Measurement Model

enter/exit events

are “interval” events (in shared memory)

application-wide

performance data
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TAU Plugin Architecture

Extend TAU event interface for plugins
Events: interval, atomic

Specialized on event ID

Synchronous operation

Create TAU interface for trigger plugins
Named trigger

Pass application data
Synchronous

Asynchronous using agent plugin
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Plugin-based Infrastructure for Non-Interactive Tuning

• TAU supports a fully-customizable plugin 

infrastructure based on callback event 

handler registration for salient states inside 

TAU:

Function Registration / Entry / Exit

Phase Entry / Exit

Atomic Event Registration / Trigger

Init / Finalize Profiling

Interrupt Handler

MPI_T

• Application can define its own “trigger” states 

and associated plugins

Pass arbitrary data to trigger state plugins
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TAU Runtime Control of Plugin

• TAU defines a plugin API to deliver access control to the 

internal plugin map

• User can specify a regular expression to control plugins 

executed for a class of named states at runtime

Access to map on a process is serialized: application is 

expected to access map through main thread
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TAU Customization

• TAU states can be named or generic

• TAU distinguishes named states in a way that allows for separation of occurrence of a 

state from the action associated with it

Function entry for “foo” and “bar” represent distinguishable states in TAU

• TAU maintains an internal map of a list of plugins associated with each state
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PVARs Exposed by MVAPICH2
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CVARs Exposed by MVAPICH2
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Using MVAPICH2 and TAU with Multiple CVARs

• To set CVARs or read PVARs using TAU for an uninstrumented binary:

% export TAU_TRACK_MPI_T_PVARS=1

% export TAU_MPI_T_CVAR_METRICS=

MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1], 

MPIR_CVAR_IBA_EAGER_THRESHOLD

% export TAU_MPI_T_CVAR_VALUES=32,64000

% export PATH=/path/to/tau/x86_64/bin:$PATH

% mpirun -np 1024 tau_exec -T mvapich,mpit ./a.out

% paraprof
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MPI Collective Sync in TAU: Time wasted in barrier
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MPI Collective Sync in TAU: Time wasted in an implicit barrier
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HeFFTe: Comparing collective sync time with TAU’s comparison window
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MPI Collective Sync in TAU: Time wasted in an implicit barrier
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AWP-ODC: Callsite location of MPI Collective Sync

export TAU_CALLSITE=1; aprun –n 64 tau_exec ./a.out
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AWP-ODC: Tracing with TAU and Perfetto.dev
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Binary instrumentation of libraries: Work in progress

% tau_run a.out –o a.inst

instruments a binary. Other flags –T <tags>, -f <selective instrumentation file>
% tau_run -l /path/to/libhdf5.so.310 –o libhdf5.so.310

instruments a DSO
% tau_exec ./a.out

executes the uninstrumented application with the instrumented shared object. 

To use with DyninstAPI 13 on x86_64:
1. Load spack: source spack/share/spack/setup-env.sh
2. Install dyninst: spack install dyninst@13 %gcc@11
3. Configure tau with dyninst:

3.1 spack find -p dyninst boost tbb elfutils
3.2 Copy the paths for each package into the configure line

3.3 ./configure -bfd=download -dyninst=<dir> -tbb=<dir> -boost=<dir> -elf=<dir>; <set paths>; make install
With AMD GPUs:
./configure -bfd=download -mpi -rocm=/opt/rocm-6.0.0 -rocprofiler=/opt/rocm-6.0.0 -dyninst=download; make install
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Binary instrumentation of libraries: HDF5
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AWP-ODC [UCSD]: TAU+CUPTI+DyninstAPI
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Profiling and Tracing

• Tracing shows you when the events take 

place on a timeline

Profiling Tracing

• Profiling shows you how much

(total) time was spent in each routine

• Profiling and tracing

Profiling shows you how much (total) time was spent in each routine

Tracing shows you when the events take place on a timeline
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Inclusive vs. Exclusive values
■ Inclusive

■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

Inclusive Exclusive

int foo() 
{
int a;
a = 1 + 1;

bar();

a = a + 1;
return a;

}
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How much data do you want?

Limited

Profile

Flat 

Profile

Loop

Profile

Callsite

Profile

Callpath

Profile

Trace

O(KB) O(TB)
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Types of Performance Profiles

• Flat profiles
• Metric (e.g., time) spent in an event

• Exclusive/inclusive, # of calls, child calls, …

• Callpath profiles
• Time spent along a calling path (edges in callgraph)

• “main=> f1 => f2 => MPI_Send”

• Set the TAU_CALLPATH and TAU_CALLPATH_DEPTH environment variables

• Callsite profiles
• Time spent along in an event at a given source location

• Set the TAU_CALLSITE environment variable

• Phase profiles
• Flat profiles under a phase (nested phases allowed)

• Default “main” phase

• Supports static or dynamic (e.g. per-iteration) phases
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Performance Data Measurement

Direct via Probes Indirect via Sampling

• Exact 

measurement

• Fine-grain control

• Calls inserted 

into code

• No code modification

• Minimal effort

• Relies on debug 

symbols (-g)

Call START(‘potential’)

// code

Call STOP(‘potential’)
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Sampling

Running program is periodically interrupted to take 

measurement

Timer interrupt, OS signal, or HWC overflow

Service routine examines return-address stack

Addresses are mapped to routines using symbol 

table information

Statistical inference of program behavior

Not very detailed information on highly volatile 

metrics

Requires long-running applications

Works with unmodified executables

Time

main foo(0) foo(1) foo(2) int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Measurement

t9t7t6t5t4t1 t2 t3 t8
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Instrumentation

Measurement code is inserted such that every event of 

interest is captured directly

Can be done in various ways

Advantage:

Much more detailed information

Disadvantage:

Processing of source-code / executable

necessary

Large relative overheads for small functions

Time

Measurement int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12t13 t14

main foo(0) foo(1) foo(2)

TAU_START(“main”);

TAU_STOP(“main”);

TAU_START(“foo”);

TAU_STOP(“foo”);
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Inclusive Measurements
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Exclusive Time
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Tracing: Jumpshot (ships with TAU)
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Tracing: Chrome Browser

% export TAU_TRACE=1

% mpirun –np 256 tau_exec ./a.out
% tau_treemerge.pl; tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing   (Load -> app.json)
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Visualizing Traces with https://Perfetto.dev

wasd
W = widen
S = Shrink
A = Left
D = Right
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Vampir [TU Dresden] Timeline: Kokkos

% export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

% tau_exec -T ompt –ompt ./a.out
% vampir traces.otf2 & 
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ParaProf Profile Browser

% paraprof
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ParaProf 3D Profile Browser
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TAU – ParaProf 3D Visualization

% paraprof app.ppk

Windows -> 3D Visualization -> Bar Plot (right pane)
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TAU – 3D Communication Window

% export TAU_COMM_MATRIX=1; mpirun … tau_exec ./a.out

% paraprof ;     Windows -> 3D Communication Matrix
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Event Based Sampling (EBS)

% mpirun -n 16 tau_exec –ebs a.out

Uninstrumented!

File: point_solver.F90

Line: 2705
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Using ParaTools Pro for E4STM image on AWS with Heidi AI/ODDC

Login to:
https://paratools.adaptivecomputing.com

with the credentials. Firefox private window

recommended. 

Click on Student tab and use code:70034

https://paratools.adaptivecomputing.com/
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Connect to https://paratools.adaptivecomputing.com

• Use Student tab and enter name, email, session code 70034
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Connect to https://paratools.adaptivecomputing.com

• Check your email, enter verification code. 
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Connect to https://paratools.adaptivecomputing.com

• Click cluster
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Connect to https://paratools.adaptivecomputing.com

• Click Remote Desktop
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Connect to https://paratools.adaptivecomputing.com

• You may have to enable pop-up windows and accept



59

Connect to Students tab with code 70034 at 
https://paratools.adaptivecomputing.com

• You should see this jellyfish. Click on Activities.

To copy text from

other windows
click on the
this button to 

access the 
clipboard
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Connect to https://paratools.adaptivecomputing.com

• Click on Activities, nine dots, and then select the Terminal application
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To increase font size right click and choose preferences
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Choose font size after clicking 
Custom Font for Terminal
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Running your first MPI application on the allocated cluster

% cd ~/examples/mpi-procname

% ./compile.sh

% ./run-single-node.sh # on the login node

% cat mpiprocname.qsub

% qsub mpiprocname.qsub

% qstat –u $USER

% cat mpiprocname.o*

% cd ~/examples/osu-benchmarks

% cat bw.qsub

% qsub bw.qsub

% cat bw.o*                # How close did you get to 50Gbps? At what message size? Multiply MB/s x 8 … 
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Launching the binary using tau_exec –ebs

cd ~/examples/petsc-cpu
vi ex50.qsub

Add tau_exec –ebs
before ./ex50 in the launch 
command. Save the file. 
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TAU’s ParaProf Profile Browser: Source Code Browser

qsub ex50.qsub

qstat –u $USER

# After it completes

ls

paraprof &
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TAU’s paraprof browser with PETSc performance profile

paraprof

Choose 
Show thread statistics table by 
right clicking on 
node 0, thread 0. 
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Using pprof: TAU’s text based profile browser 

pprof –a | more

Here we see PETSc timers 
translated into TAU timers using 
the Perfstubs library. 

No modification to the source, 
build system, or the binary!   
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CoMD: TAU with event-based sampling (EBS)

% cd examples/CoMD/src-mpi

% make; cd ../bin
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CoMD: TAU with event-based sampling (EBS)

Without TAU:

% qsub comd.qsub

With TAU:

% qsub tau.qsub

% qstat –u $USER

Also see 
../petsc-cuda
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CoMD: TAU’s paraprof visualizer

% paraprof & 
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Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOO
TPRINT

0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size 
and high water mark of memory usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically. 

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information, 
setting to 1 generates flat profile and context events have just parent information (e.g., 
Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are 
called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and 
takes less than 10 usec of inclusive time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was 
called. Also compatible with tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g., 
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

TAU’s Runtime Environment Variables 
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Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –
otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs
or TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level 
respectively. 

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include 
lists specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also, 
“lowoverhead” option is available. 

TAU_OMPT_RESOLVE_ADDRESS_
EAGERLY

1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT. 
Setting to 0 allows the user to do offline address translation. 

Runtime Environment Variables
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Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec
–memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g., 
TAU_EBS_SOURCE=PAPI_TOT_INS when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with 
TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory 
debugging. 

TAU_MEMDBG_PROTECT_BELOW/AB
OVE

0 Setting to 1 enables tracking runtime bounds checking below or above the 
array bounds (requires –optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory 
allocations. 

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not 
be referenced until it is reallocated (requires –optMemDbg or tau_exec –
memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory 
error occurs at runtime. 

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for 
min/max

Runtime Environment Variables
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Download TAU from U. Oregon

http://tau.uoregon.edu

https://e4s.io [TAU in Docker/Singularity containers] 

for more information

Free download, open source, BSD license

http://tau.uoregon.edu/
https://e4s.io/
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Performance Research Laboratory, 

University of Oregon, Eugene

www.uoregon.edu

http://www.uoregon.edu/
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Thank you

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of 

the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration, 

responsible for delivering a capable exascale ecosystem, including software, applications, and 

hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The 

work discussed in this presentation represents creative contributions of many people who are 

passionately working toward next-generation computational science. 

https://www.exascaleproject.org

https://www.exascaleproject.org/
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