OPARI 2

USER MANUAL
1.0.6 (revision 830)

Tue Oct 9 2012 02:17:57

Contents

1 Opari2 1
1.1 INSTALLATION oo 1

1.2 USAGE 2

1.3 CTCstringdecoding 4

1.4 LINKING (startup initializationonly) 4

1.5 POMP user instrumentation 5

1.6 EXAMPLE 5

1.7 News . . . e 6
1.7.1 LINKSTEP. 6

172 POMP2 6

1.7.3 POMP2_Parallel fork 6

1.74 pomp_tpd 7

1.7.5 Taskingconstruct, 7

1.8 SUMMARY 8
Appendix A OPARI2 INSTALL 11
Appendix B Data Structure Documentation 19
B.1 POMP2_Region_info Struct Reference 19
B.1.1 Detailed Description 20

B.1.2 Field Documentation 20
Appendix C File Documentation 23
C.1 pomp2_lib.h File Reference 23
C.1.1 Detailed Description 24

C.1.2 Typedef Documentation 24

C.1.3 Function Documentation 24

C.2 pomp2_region_info.h File Reference 26
C.2.1 Detailed Description 26

C.2.2 Enumeration Type Documentation 27

C.2.3 Function Documentation 27

List of Figures

List of Tables

Chapter 1
Opari2

Opari2 is a tool to automatically instrument C, C++ and Fortran source code files in
which OpenMP is used. Function calls to a POMP2 API are inserted around OpenMP
directives. By implementing this API, detailed measurements regarding the runtime
behavior of an OpenMP application can be made. A conforming POMP2 implementa-
tion needs to implement all POMP2 functions, see pomp2_lib.h for a list of those.

OpenMP 3.0 introduced tasking to OpenMP. To support this feature the POMP2 adapter
needs to do some bookkeeping in regard to specific task IDs. The pomp2_lib.c provided
with this package includes the necessary code so it is strongly advised to use it as a basis
for writing an adapter to your own tool.

A detailed description of the first Opari version has been published by Mohr et al.
in "Design and prototype of a performance tool interface for OpenMP" (Journal of
supercomputing, 23, 2002).

1.1 INSTALLATION

Opari2 was developed with Autotools. After downloading and unpacking, change into
your build directory and perform the following steps:

1. ./configure
[--prefix=<installation directory>]

[--with-compiler-suite=<gcc|ibm|intel|pathscale|pgi|studio>]
2. make

3. make install

See the file INSTALL for further information.

CHAPTER 1. OPARI2

1.2 USAGE

To create an instrumented version of an OpenMP application, each file of interest is
transformed by the OPARI2 tool. The application is then linked against the POMP2
runtime measurement library and optionally to a special initialization file (see section
LINKING (startup initialization only) and SUMMARY for further details).

A call to Opari2 has the following syntax:

Usage: opari2 [OPTION] ... infile [outfile]
with following options and parameters:

[-——£77]--£90|——c|—-—c++] [OPTIONAL] Specifies the programming language
of the input source file. This option is only
necessary if the automatic language detection
based on the input file suffix fails.

[-—nosrc] [OPTIONAL] If specified, OPARI2 does not
generate #line constructs, which allow to
preserve the original source file and line
number information, in the transformation
process. This option might be necessary if
the OpenMP compiler does not understand #line

constructs. The default is to generate #line
constructs.
[--nodecl] [OPTIONAL] Disables the generation of

POMP2_DLISTXXXXX macros. These are used in the
parallel directives of the instrumentation to
make the region handles shared. By using this
option the shared clause is used directly on
the parallel directive with the resprective
region handles.

[——tpd] [OPTIONAL] Adds the clause ’copyin (<pomp_tpd>)’
to any parallel construct. This allows to
pass data from the creating thread to its
children. The variable is declared externally
in all files, so it needs to be defined by
the pomp library.

[-—disable=<constructs>] [OPTIONAL] Disable the instrumentation of
manually-annotated POMP regions or the
more fine-grained OpenMP constructs such as
!'SOMP ATOMIC. <constructs> is a comma
separated list of the constructs for which
the instrumentation should be disabled.
Accepted tokens are atomic, critical, master,
flush, single, ordered or locks (as well as
sync to disable all of them) or regions.

[--task= Special treatment for the task directive
abort |warn|remove] abort: Stop instrumentation with an error
message when encountering a task
directive.
warn: Resume but print a warning.

remove: Remove all task directives.

[--—untied= Special treatment for the untied task attribute.
abort |keep|no-warn] The default beavior is to remove the untied

1.2 USAGE

attribute, thus making all tasks tied, and print

out a warning.

abort: Stop instrumentation with an error
message when encountering a task
directive with the untied attribute.

keep: Do not remove the untied attribute.

no-warn: Do not print out a warning.

[--tpd-mangling= [OPTIONAL] If programming languages are mixed
gnulintel|sun|pgi| (C and Fortran), the <pomp_tpd> needs to use
ibm|cray] the Fortran mangled name also in C files.

This option specifies to use the mangling
scheme of the gnu, intel, sun, pgi or ibm
compiler. The default is to use the mangling
scheme of the compiler used to build opari2.

[-—version] [OPTIONAL] Prints version information.
[--help] [OPTIONAL] Prints this help text.
infile Input file name.

[outfile] [OPTIONAL] Output file name. If not

specified, opari2 uses the name
infile.mod.suffix if the input file is
called infile.suffix.

Report bugs to <scorep-bugs@groups.tu-dresden.de>.
If you run Opari2 on the input file example. c it will create two files:

e example.mod.c is the instrumented version of example.c, i.e. it con-
tains the original code plus calls to the POMP2 API referencing handles to the
OpenMP regions identified by Opari2.

* example.c.opari.inc contains the OpenMP region handle definitions ac-
companied with all the relevant data needed by the handles. This compile time
context (CTC) information is encoded into a string for maximum portability.
For each region, the tuple (region_handle, ctc_string) is passed to an initializing
function (POMP2_Assign_handle()). All calls to these initializing functions are
gathered in a function named POMP2_Init_reg XXX_YY, where XXX_YY is
unique for each compilation unit.

At some point during the runtime of the instrumented application, the region handles
need to be initialized using the information stored in the CTC string. This can be done
in one of of two ways:

¢ during startup of the measurement/POMP2 system, or

e during runtime when a region handle is accessed for the first time.

We highly recommend using the first option as it incurs much less runtime overhead
than the second one (no locking, no lookup needed). In this case all POMP2_Init_reg_-
XXX_YY functions introduced by opari2 need to be called. See LINKING (startup ini-
tialization only) for further details. For runtime initialization the ctc string as argument
to the relevant POMP2 function calls is provided as an argument.

CHAPTER 1. OPARI2

1.3 CTC string decoding

As mentioned above, we pass ctc strings to different POMP2 functions. These func-
tions need to parse the string in order to process the encoded information. With
POMP2_Region_info and ctcString2RegionInfo() the opari2 package provides means
of doing this, see pomp2_region_info.h.

The CTC string is a string in the format "lengthxkey=valuexkey=valuex[key=value]xx,
for example:

x82xregionType=parallel+sscl=xmpl.c:61:61xescl=xmpl.c:66:66xhaslf=1xx
Mandatory keys are:

* regionType Type of the region (here parallel)
* sscl First line of the region (usually with full path to file)

* escl Last line of the region
Optional keys are

* hasNumThreads Set if a numThreads clause is used in the OpenMP directive

haslf Set if an if clause is used
e hasOrdered Set if an ordered clause is used

e hasReduction Set if a reduction clause is used

hasSchedule Set if a schedule clause is used

* hasCollapse Set if a collapse clause is used

The optional values are set to 0 by default, i.e. the presence of the key denotes the
presence of the respective clause.

You can use the function ctcString2RegionInfo() to decode CTC strings. It can be
found in pomp2_region_info.c and pomp2_region_info.h, installed under <opari-prefix>/share/opari2/devel.

1.4 LINKING (startup initialization only)

For startup initialization all POMP2_Init_reg_ XXX _Y'Y functions that can be found in
the object files and libraries of the application are called. This is done by creating an
additional compilation unit that contains calls to following POMP2 functions:

* POMP2_Init_region(),
* POMP2_Get_num_regions(), and

* POMP2_Get_opari2_version().

1.5 POMP user instrumentation

The resulting object file is linked to the application. During startup of the measurement
system the only thing to be done is to call POMP2_Init_region() which then calls all
POMP2_Init_reg_ XXX_YY functions.

In order to create the additional compilation unit (for example pomp2_init_file.c)
the following command sequence can be used:

% ‘opari2-config —--nm‘ <objs_and_libs> | \
‘opari2-config —--egrep' —i "pomp2_init_reg" | \
‘opari2-config --egrep' " [TN] " | \
‘opari2-config ——awk-cmd‘' -f \

‘opari2-config --awk-script' > pomp2_init_file.c

Here, <objs_and_libs> denotes the entire set of object files and libraries that were
instrumented by opari2.

Due to portability reasons nm, egrep and awk are not called directly but via the
provided opari2—-config tool.

1.5 POMP user instrumentation

For manual user instrumentation the following pragmas are provided.
C/C++:

#pragma pomp inst init

#pragma pomp inst begin (region_name)
#pragma pomp inst altend(region_name)
#pragma pomp inst end(region_name)

Fortran:

'SPOMP INST INIT

I'SPOMP INST BEGIN (region_name)
!'SPOMP INST ALTEND (region_name)
!'SPOMP INST END (region_name)

Users can specify code regions, like functions for example, with INST BEGIN and
INST END. If a region contains several exit points like return/break/exit/... all but the
last need to be marked with INST ALTEND pragmas. The INST INIT pragma should
be used for initialization in the beginning of main, if no other initialization method is
used. See the EXAMPLE section for an example on how to use user instrumentation.

1.6 EXAMPLE

The directory <prefix>/share/opari2/doc/example contains the following files:

example.c
example.f
Makefile

CHAPTER 1. OPARI2

The Makefile contains all required information for building the instrumented and unin-
strumented binaries. It demonstrates the compilation and linking steps as described
above.

Additional examples which illustrate the use of user instrumentation can be found
in <prefix>/share/opari2/doc/example_user_instrumentation. The folder contains the
following files:

example_user_instrumentation.c
example_user_instrumentation.f
Makefile

1.7 News

1.7.1 LINK STEP

Opari2 uses a new mechanism to link files. The main advantage is, that no opari.rc
file is needed anymore. Libraries can now be preinstrumented and parallel builds are
supported. To achieve this, the handles for parallel regions are instrumented using a
ctc_string.

1.7.2 POMP2

The POMP2 interface is not compatible with the original POMP interface. All func-
tions of the new API begin with POMP2_. The declaration prototypes can be found in
pomp2_lib.h.

1.7.3 POMP2_Parallel_fork

The POMP2_Parallel_fork() call has an additional argument to pass the requested num-
ber of threads to the POMP?2 library. This allows the library to prepare data structures
and allocate memory for the threads before they are created. The value passed to the
library is determined as follows:

e If a num_threads clause is present, the expression inside this clause is eval-
uated into a local variable pomp_num_threads. This variable is afterwards
passed in the call to POMP2_Parallel_fork() and in the num_threads clause itself.

* If no num_threads clause is present, omp_get_max_threads() is used to deter-
mine the requested value for the next parallel region. This value is stored in
pomp_num_threads and passed to the POMP2_Parallel_fork() call.

In Fortran, instead of omp_get_max_threads(), a wrapper function pomp_get_max_-
threads_XXX_X s used. This function is needed to avoid multiple definitions of omp_-
get_max_threads() since we do not know whether it is defined in the user code or not.
Removing all definitions in the user code would require much more Fortran parsing
than is done with opari2, since function definitions cannot easily be distinguished from
variable definitions.

6

1.7 News

1.74 pomp_tpd

If it is necessary for the POMP2 library to pass information from the master thread to
its children, the option ——tpd can be used. Opari2 uses the copyin clause to pass a
threadprivate variable pomp_tpd to the newly spawned threads at the beginning of a
parallel region. This is a 64 bit integer variable, since Fortran does not allow pointers.
However a pointer can be stored in this variable, passed to child threads with the copyin
clause (in C/C++ or Fortran) and later on be cast back to a pointer in the pomp library.

To support mixed programming (C/Fortran) the variable name depends on the name
mangling of the Fortran compiler. This means, for GNU, Sun, Intel and PGI C com-
pilers the variable is called pomp_tpd_ and for IBM it is called pomp_tpd in C. In
Fortran it is of course always called pomp_tpd. The --tpd-mangling option can be used
to change this. The variable is declared extern in all program units, so the pomp library
contains the actual variable declaration of pomp_tpd as a 64 bit integer.

1.7.5 Tasking construct

In OpenMP 3.0 the new tasking construct was introduced. All parts of a program
are now implicitly executed as tasks and the user gets the possibility of creating tasks
that can be scheduled for asynchronous execution. Furthermore these tasks can be
interrupted at certain scheduling points and resumed later on (see the OpenMP API 3.0
for more detailed information).

Opari2 instruments functions POMP2_Task_create_begin and POMP2_Task_create_-
end to allow the recording of the task creation time. For the task execution time, the
functions POMP2_Task_begin and POMP2_Task_end are instrumented in the code.
To correctly record a profile or a trace of a program execution these different instances
of tasks need to be differentiated. Since OpenMP does not provide Task ids, the perfor-
mance measurement system needs to create and maintain own task ids. This cannot be
done by code instrumentation as done by Opari2 alone but requires some administra-
tion of task ids during runtime. To allow the measurement system to administrate these
ids, additional task id parameters (pomp_old_task/pomp_new_task) were added to all
functions belonging to OpenMP constructs which are task scheduling points. With this
package there is a "dummy" library, which can be used as an adapter to your mea-
surement system. This library contains all the relevant functionality to keep track of
the different instances of tasks and it is highly recommended to use it as a template to
implement your own adapter for your measurement system.

For more detailed information on this mechanism see:

"How to Reconcile Event-Based Performance Analysis with Tasking in OpenMP"
by Daniel Lorenz, Bernd Mohr, Christian Rossel, Dirk Schmidl, and Felix Wolf

In: Proc. of 6th Int. Workshop of OpenMP (IWOMP), LNCS, vol. 6132, pp. 109121
DOI: 10.1007/978-3-642-13217-9_9

CHAPTER 1. OPARI2

1.8 SUMMARY

The typical usage of OPARI2 consists of the following steps:
1. Call OPARI2 for each input source file
% opari2 filel.f90

% opariz fileN.£90

S

2. Compile all modified output files *.mod.* using the OpenMP compiler

3. Generate the initialization file

% ‘opari2-config --nm‘ filel.mod.o ... fileN.mod.o | \
‘opari2-config —--egrep' —-i "pomp2_init_reg" | \
‘opari2-config --egrep " [TD] " | \
‘opari2-config ——awk-cmd' -f \

‘opari2-config --awk-script' > pomp2_init_file.c

4. Link the resulting object files against the pomp2 runtime measurement library.

Appendices

Appendix A

OPARI2 INSTALL

For generic installation

Configuration of OPARI2

KAk Ak KAk hkhkhkhkhkhkhkkhhkhkhkhk,k,kk*x*

Optional Features:
—--disable-FEATURE
——enable-FEATURE [=ARG]
—-—-enable-silent-rules
—-—-disable-silent-rules
—-disable-libtool-lock
——-disable-openmp

instructions see below.

do not include FEATURE (same as —-enable-FEATURE=no)
include FEATURE [ARG=yes]

less verbose build output (undo: ‘make V=17")

verbose build output (undo: ‘make V=0')

avoid locking (might break parallel builds)

do not use OpenMP

--disable-option-checking ignore unrecognized —--enable/--with options
——-disable-dependency-tracking speeds up one-time build
—-—-enable-dependency-tracking do not reject slow dependency extractors

——enable-shared [=PKGS]
——enable-static [=PKGS]

build shared libraries [default=no]
build static libraries [default=yes]

—-—enable-fast-install [=PKGS] optimize for fast installation [default=yes]

Optional Packages:
—-with-PACKAGE [=ARG]
—--without-PACKAGE

use PACKAGE [ARG=yes]
do not use PACKAGE (same as —-with-PACKAGE=no)

--with-platform=(auto,disabled, <platform>)

autodetect platform [auto], disabled or select one
from: altix, aix, arm, bgl, bgp, bgg, crayxt, linux,
solaris, mac, necsx.

—-with-compiler-suite=(gcc|ibm|intel|pathscale|pgi|studio)

--with-pic

--with-gnu-1d
—--with-sysroot=DIR

The compiler suite to build this package with. Needs
to be in $PATH [gcc].

try to use only PIC/non-PIC objects [default=use
both]

assume the C compiler uses GNU 1ld [default=no]
Search for dependent libraries within DIR

(or the compiler’s sysroot if not specified).

Some influential environment variables:

(note that the _FOR_BUILD variables take precedence, e.g. if you call
opari’s configure from a top level configure in a cross-compile
environment that defines CC as well as CC_FOR_BUILD etc.)

CC_FOR_BUILD

C compiler command for the frontend build

CXX_FOR_BUILD

APPENDIX A. OPARI2 INSTALL

C++ compiler command for the frontend build
F77_FOR_BUILD

Fortran 77 compiler command for the frontend build
FC_FOR_BUILD

Fortran compiler command for the frontend build
CPPFLAGS_FOR_BUILD

(Objective) C/C++ preprocessor flags for the frontend build,

e.g. —I<include dir> if you have headers in a nonstandard

directory <include dir>
CFLAGS_FOR_BUILD

C compiler flags for the frontend build
CXXFLAGS_FOR_BUILD

C++ compiler flags for the frontend build
FFLAGS_FOR_BUILD

Fortran 77 compiler flags for the frontend build
FCFLAGS_FOR_BUILD

Fortran compiler flags for the frontend build
LDFLAGS_FOR_BUILD

linker flags for the frontend build, e.g. -L<1lib dir> if you

have libraries in a nonstandard directory <lib dir>
LIBS_FOR_BUILD

libraries to pass to the linker for the frontend build, e.g.

—1l<library>

ccC C compiler command

CFLAGS C compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -1l<library>

CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. —-I<include dir> if
you have headers in a nonstandard directory <include dir>

CXX C++ compiler command

CXXFLAGS C++ compiler flags

F77 Fortran 77 compiler command

FFLAGS Fortran 77 compiler flags

FC Fortran compiler command

FCFLAGS Fortran compiler flags

CPP C preprocessor

CXXCPP C++ preprocessor

Use these variables to override the choices made by ‘configure’ or to help
it to find libraries and programs with nonstandard names/locations.

Please report bugs to <scorep-bugs@groups.tu-dresden.de>.

Installation Instructions

R R R S

Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004, 2005,
2006, 2007, 2008, 2009 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without warranty of any kind.

Basic Installation

Briefly, the shell commands ‘./configure; make; make install’ should
configure, build, and install this package. The following
more—detailed instructions are generic; see the ‘README’ file for

12

instructions specific to this package. Some packages provide this
‘INSTALL’ file but do not implement all of the features documented
below. The lack of an optional feature in a given package is not
necessarily a bug. More recommendations for GNU packages can be found
in *note Makefile Conventions: (standards)Makefile Conventions.

The ‘configure’ shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a ‘Makefile’ in each directory of the package.
It may also create one or more ‘.h’ files containing system-dependent
definitions. Finally, it creates a shell script ‘config.status’ that
you can run in the future to recreate the current configuration, and a
file ‘config.log’ containing compiler output (useful mainly for
debugging ‘configure’).

It can also use an optional file (typically called ‘config.cache’
and enabled with ‘--cache-file=config.cache’ or simply ‘-C’) that saves
the results of its tests to speed up reconfiguring. Caching is
disabled by default to prevent problems with accidental use of stale
cache files.

If you need to do unusual things to compile the package, please try
to figure out how ‘configure’ could check whether to do them, and mail
diffs or instructions to the address given in the ‘README’ so they can
be considered for the next release. If you are using the cache, and at
some point ‘config.cache’ contains results you don’t want to keep, you
may remove or edit it.

The file ‘configure.ac’ (or ‘configure.in’) is used to create
‘configure’ by a program called ‘autoconf’. You need ‘configure.ac’ if
you want to change it or regenerate ‘configure’ using a newer version
of ‘autoconf’.

The simplest way to compile this package is:

1. ‘cd’ to the directory containing the package’s source code and type
‘./configure’ to configure the package for your system.

Running ‘configure’ might take a while. While running, it prints
some messages telling which features it is checking for.

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’ to run any self-tests that come with
the package, generally using the just-built uninstalled binaries.

4. Type ‘make install’ to install the programs and any data files and
documentation. When installing into a prefix owned by root, it is
recommended that the package be configured and built as a regular
user, and only the ‘make install’ phase executed with root
privileges.

5. Optionally, type ‘make installcheck’ to repeat any self-tests, but
this time using the binaries in their final installed location.
This target does not install anything. Running this target as a
regular user, particularly if the prior ‘make install’ required
root privileges, verifies that the installation completed
correctly.

6. You can remove the program binaries and object files from the
source code directory by typing ‘make clean’. To also remove the
files that ‘configure’ created (so you can compile the package for

13

APPENDIX A. OPARI2 INSTALL

a different kind of computer), type ‘make distclean’. There is
also a ‘make maintainer-clean’ target, but that is intended mainly
for the package’s developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.

7. Often, you can also type ‘make uninstall’ to remove the installed
files again. In practice, not all packages have tested that
uninstallation works correctly, even though it is required by the
GNU Coding Standards.

8. Some packages, particularly those that use Automake, provide ‘make
distcheck’, which can by used by developers to test that all other
targets like ‘make install’ and ‘make uninstall’ work correctly.
This target is generally not run by end users.

Compilers and Options

Some systems require unusual options for compilation or linking that
the ‘configure’ script does not know about. Run ‘./configure —--help’
for details on some of the pertinent environment variables.

You can give ‘configure’ initial wvalues for configuration parameters
by setting variables in the command line or in the environment. Here
is an example:

./configure CC=c99 CFLAGS=-g LIBS=-lposix

*Note Defining Variables::, for more details.

Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you can use GNU ‘make’. ‘cd’” to the
directory where you want the object files and executables to go and run
the ‘configure’ script. ‘configure’ automatically checks for the
source code in the directory that ‘configure’ is in and in ‘..’. This
is known as a "VPATH" build.

With a non-GNU ‘make’, it is safer to compile the package for one
architecture at a time in the source code directory. After you have
installed the package for one architecture, use ‘make distclean’ before
reconfiguring for another architecture.

On MacOS X 10.5 and later systems, you can create libraries and
executables that work on multiple system types—--known as "fat" or
"universal" binaries--by specifying multiple ‘-arch’ options to the
compiler but only a single ‘-arch’ option to the preprocessor. Like
this:

./configure CC="gcc —arch 1386 —arch x86_64 —arch ppc —arch ppc64" \
CXX="g++ —arch 1386 —arch x86_64 —arch ppc -arch ppc64" \
CPP="gcc -E" CXXCPP="g++ —E"

This is not guaranteed to produce working output in all cases, you
may have to build one architecture at a time and combine the results

using the ‘lipo’ tool if you have problems.

Installation Names

14

By default, ‘make install’ installs the package’s commands under
‘/usr/local/bin’, include files under ‘/usr/local/include’, etc. You
can specify an installation prefix other than ‘/usr/local’ by giving
‘configure’ the option ‘--prefix=PREFIX’, where PREFIX must be an
absolute file name.

You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. TIf you
pass the option ‘--exec-prefix=PREFIX’ to ‘configure’, the package uses
PREFIX as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.

In addition, if you use an unusual directory layout you can give
options like ‘--bindir=DIR’ to specify different values for particular
kinds of files. Run ‘configure --help’ for a list of the directories
you can set and what kinds of files go in them. In general, the
default for these options is expressed in terms of ‘${prefix}’, so that
specifying just ‘--prefix’ will affect all of the other directory
specifications that were not explicitly provided.

The most portable way to affect installation locations is to pass the
correct locations to ‘configure’; however, many packages provide one or
both of the following shortcuts of passing variable assignments to the
‘make install’ command line to change installation locations without
having to reconfigure or recompile.

The first method involves providing an override variable for each
affected directory. For example, ‘make install
prefix=/alternate/directory’ will choose an alternate location for all
directory configuration variables that were expressed in terms of
‘S$S{prefix}’. Any directories that were specified during ‘configure’,
but not in terms of ‘${prefix}’, must each be overridden at install
time for the entire installation to be relocated. The approach of
makefile variable overrides for each directory variable is required by
the GNU Coding Standards, and ideally causes no recompilation.
However, some platforms have known limitations with the semantics of
shared libraries that end up requiring recompilation when using this
method, particularly noticeable in packages that use GNU Libtool.

The second method involves providing the ‘DESTDIR’ variable. For
example, ‘make install DESTDIR=/alternate/directory’ will prepend

‘/alternate/directory’ before all installation names. The approach of
‘DESTDIR’ overrides is not required by the GNU Coding Standards, and
does not work on platforms that have drive letters. On the other hand,

it does better at avoiding recompilation issues, and works well even
when some directory options were not specified in terms of ‘${prefix}’
at ‘configure’ time.

Optional Features

If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving ‘configure’ the
option ‘--program-prefix=PREFIX’ or ‘--program-suffix=SUFFIX’.

Some packages pay attention to ‘--enable-FEATURE’ options to
‘configure’, where FEATURE indicates an optional part of the package.
They may also pay attention to ‘--with-PACKAGE’ options, where PACKAGE
is something like ‘gnu-as’ or ‘x’ (for the X Window System). The
‘README’ should mention any ‘-—-enable-’ and ‘--with-’ options that the

15

APPENDIX A. OPARI2 INSTALL

package recognizes.

For packages that use the X Window System, ‘configure’ can usually
find the X include and library files automatically, but if it doesn’t,
you can use the ‘configure’ options ‘--x-includes=DIR’ and
‘-—x-libraries=DIR’ to specify their locations.

Some packages offer the ability to configure how verbose the

execution of ‘make’ will be. For these packages, running ‘./configure
——enable-silent-rules’ sets the default to minimal output, which can be
overridden with ‘make V=1’; while running ‘./configure

——disable-silent-rules’ sets the default to verbose, which can be
overridden with ‘make V=0'.

Particular systems

On HP-UX, the default C compiler is not ANSI C compatible. If GNU
CC is not installed, it is recommended to use the following options in
order to use an ANSI C compiler:
./configure CC="cc —-Ae -D_XOPEN_SOURCE=500"

and if that doesn’t work, install pre-built binaries of GCC for HP-UX.

On OSF/1 a.k.a. Tru64, some versions of the default C compiler cannot

parse its ‘<wchar.h>’ header file. The option ‘-nodtk’ can be used as
a workaround. If GNU CC is not installed, it is therefore recommended
to try

./configure CC="cc"
and if that doesn’t work, try
./configure CC="cc -nodtk"
On Solaris, don’t put ‘/usr/ucb’ early in your ‘PATH’. This
directory contains several dysfunctional programs; working variants of
these programs are available in ‘/usr/bin’. So, if you need ‘/usr/ucb’

in your ‘PATH’, put it _after_ ‘/usr/bin’.

On Haiku, software installed for all users goes in ‘/boot/common’,
not ‘/usr/local’. It is recommended to use the following options:

./configure —--prefix=/boot/common

Specifying the System Type

There may be some features ‘configure’ cannot figure out
automatically, but needs to determine by the type of machine the package
will run on. Usually, assuming the package is built to be run on the
same architectures, ‘configure’ can figure that out, but if it prints
a message saying it cannot guess the machine type, give it the
‘-—build=TYPE’ option. TYPE can either be a short name for the system
type, such as ‘sun4’, or a canonical name which has the form:

CPU-COMPANY-SYSTEM
where SYSTEM can have one of these forms:

0os

16

KERNEL-0S

See the file ‘config.sub’ for the possible values of each field. If
‘config.sub’ isn’t included in this package, then this package doesn’t
need to know the machine type.

If you are _building_ compiler tools for cross—-compiling, you should
use the option ‘--target=TYPE’ to select the type of system they will
produce code for.

If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with ‘--host=TYPE’.

Sharing Defaults

If you want to set default values for ‘configure’ scripts to share,
you can create a site shell script called ‘config.site’ that gives
default values for variables like ‘CC’, ‘cache_file’, and ‘prefix’.
‘configure’ looks for ‘PREFIX/share/config.site’ if it exists, then
‘PREFIX/etc/config.site’ if it exists. Or, you can set the
‘CONFIG_SITE’ environment variable to the location of the site script.
A warning: not all ‘configure’ scripts look for a site script.

Defining Variables

Variables not defined in a site shell script can be set in the
environment passed to ‘configure’. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. 1In order to avoid this problem, you should set
them in the ‘configure’ command line, using ‘VAR=value’. For example:

./configure CC=/usr/local2/bin/gcc

causes the specified ‘gcc’ to be used as the C compiler (unless it is
overridden in the site shell script).

Unfortunately, this technique does not work for ‘CONFIG_SHELL’ due to
an Autoconf bug. Until the bug is fixed you can use this workaround:

CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash

‘configure’ Invocation

‘configure’ recognizes the following options to control how it
operates.

‘-—-help’
_h!
Print a summary of all of the options to ‘configure’, and exit.

‘-—help=short’

‘—-—help=recursive’
Print a summary of the options unique to this package’s
‘configure’, and exit. The ‘short’ variant lists options used
only in the top level, while the ‘recursive’ variant lists options
also present in any nested packages.

17

APPENDIX A. OPARI2 INSTALL

‘-—-version’

_VI
Print the version of Autoconf used to generate the ‘configure’
script, and exit.

‘-—cache-file=FILE’
Enable the cache: use and save the results of the tests in FILE,
traditionally ‘config.cache’. FILE defaults to ‘/dev/null’ to
disable caching.

‘-—config-cache’
\7CI

\

Alias for ‘--cache-file=config.cache’.

‘—-—quiet’

‘-—-silent’

g
Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to ‘/dev/null’ (any error

messages will still be shown).

‘-—srcdir=DIR’
Look for the package’s source code in directory DIR. Usually
‘configure’ can determine that directory automatically.

‘-—prefix=DIR’
Use DIR as the installation prefix. =+note Installation Names::
for more details, including other options available for fine-tuning
the installation locations.

‘-—-no-create’

_nl
Run the configure checks, but stop before creating any output
files.

‘configure’ also accepts some other, not widely useful, options. Run
‘configure --help’ for more details.

18

Appendix B

Data Structure Documentation

B.1 POMP2 _Region info Struct Reference

This struct stores all information on an OpenMP region, like the region type or cor-
responding source lines. The function ctcString2RegionInfo() can be used to fill this
struct with data from a ctcString.

#include <pomp2_region_info.h>

Data Fields
Required attributes

POMP2_Region_type mRegionType
char * mStartFileName

unsigned mStartLinel

unsigned mStartLine2

char * mEndFileName

unsigned mEndLinel

unsigned mEndLine2

Currently not provided by opari

bool mHasCopyln

bool mHasCopyPrivate
bool mHasIf

bool mHasFirstPrivate
bool mHasLastPrivate
bool mHasNoWait

bool mHasNumThreads
bool mHasOrdered
bool mHasReduction
bool mHasCollapse
bool mHasUntied
POMP2_Schedule_type mScheduleType

APPENDIX B. DATA STRUCTURE DOCUMENTATION

* char * mUserGroupName

Attributes for specific region types

* unsigned mNumSections
* char * mCriticalName
* char * mUserRegionName

B.1.1 Detailed Description

This struct stores all information on an OpenMP region, like the region type or cor-
responding source lines. The function cteString2RegionInfo() can be used to fill this
struct with data from a ctcString.

B.1.2 Field Documentation
B.1.2.1 charx POMP2_Region_info::mCriticalName

name of a named critical region

B.1.22 charx POMP2_Region_info::mEndFileName

name of the corresponding source file from the closing pragma

B.1.2.3 unsigned POMP2_Region_info::mEndLinel

line number of the first line from the closing pragma

B.1.2.4 unsigned POMP2_Region_info::mEndLine2

line number of the last line from the closing pragma

B.1.25 bool POMP2_Region_info::mHasCollapse

true if a collapse clause is present

B.1.2.6 bool POMP2_Region_info::mHasCopyln

true if a copyin clause is present

B.1.2.7 bool POMP2_Region_info::mHasCopyPrivate

true if a copyprivate clause is present

20

B.1 POMP2_Region_info Struct Reference

B.1.2.8 bool POMP2_Region_info::mHasFirstPrivate

true if a firstprivate clause is present

B.1.2.9 bool POMP2_Region_info::mHasIf

true if an if clause is present

B.1.2.10 bool POMP2_Region_info::mHasLastPrivate

true if a lastprivate clause is present

B.1.2.11 bool POMP2_Region_info::mHasNoWait

true if a nowait clause is present

B.1.212 bool POMP2_Region_info::mHasNumThreads

true if a numThreads clause is present

B.1.2.13 bool POMP2_Region_info::mHasOrdered

true if an ordered clause is present

B.1.2.14 bool POMP2_Region_info::mHasReduction

true if a reduction clause is present

B.1.2.15 bool POMP2_Region_info::mHasUntied

true if a untied clause was present, even if the task was changed to tied during instru-
mentation.

B.1.2.16 unsigned POMP2_Region_info::mNumSections

number of sections

B.1.2.17 POMP2_Region_type POMP2_Region_info::mRegionType

type of the OpenMP region

21

APPENDIX B. DATA STRUCTURE DOCUMENTATION

B.1.2.18 POMP2_Schedule_type POMP2_Region_info::mScheduleType

schedule type in the schedule clause

B.1.2.19 char+x POMP2_Region_info::mStartFileName

name of the corresponding source file from the opening pragma

B.1.2.20 unsigned POMP2_Region_info::mStartLinel

line number of the first line from the opening pragma

B.1.2.21 unsigned POMP2_Region_info::mStartLine2

line number of the last line from the opening pragma

B.1.222 charx POMP2_Region_info::mUserGroupName

user group name

B.1.2.23 charx POMP2_Region_info::mUserRegionName

name of a user defined region

The documentation for this struct was generated from the following file:

e pomp2_region_info.h

22

Appendix C

File Documentation

C.1 pomp2_lib.h File Reference

This file contains the declarations of all POMP2 functions.
#include <stddef.h>

#include <stdint.h>

Typedefs

* typedef void * POMP2_Region_handle

Functions

e void POMP2_Assign_handle (POMP2_Region_handle xpomp2_handle, const
char ctc_string[])

* void POMP2_Begin (POMP2_Region_handle xpomp2_handle)
¢ void POMP2_End (POMP2_Region_handle xpomp2_handle)

¢ void POMP2_Finalize ()

e POMP2_Task_handle POMP2_Get_new_task_handle ()

e void POMP2_lInit ()

* void POMP2_Off ()

¢ void POMP2_On ()

Functions generated by the instrumenter

* size_t POMP2_Get_num_regions ()
¢ void POMP2_Init_regions ()
* const char * POMP2_Get_opari2_version ()

APPENDIX C. FILE DOCUMENTATION

C.1.1 Detailed Description

This file contains the declarations of all POMP2 functions. alpha

Authors

Daniel Lorenz <d . lorenz@fz-juelich.de> Dirk Schmidl <schmidl@rz.rwth—-aachen.de>
Peter Philippen <p.philippen@fz-juelich.de>

C.1.2 Typedef Documentation
C.1.21 typedef voidx POMP2_Region_handle

Handles to identify OpenMP regions.

C.1.3 Function Documentation

C.1.3.1 void POMP2_Assign_handle (POMP2_Region_handle « pomp2_handle, const
char ctc_string[])

Registers a POMP?2 region and returns a region handle.

Parameters

pomp2_- | Returns the handle for the newly registered region.
handle
ctc_string | A string containing the region data. \

C.1.3.2 void POMP2_Begin (POMP2_Region_handle « pomp2_handle)
Called at the begin of a user defined POMP?2 region.

Parameters

pomp2_- | The handle of the started region.
handle

C.1.3.3 void POMP2_End (POMP2_Region_handle « pomp2_handle)
Called at the begin of a user defined POMP?2 region.

Parameters

pomp2_- | The handle of the started region.
handle

24

mailto:d.lorenz@fz-juelich.de
mailto:schmidl@rz.rwth-aachen.de
mailto:p.philippen@fz-juelich.de

C.1 pomp2_lib.h File Reference

C.1.3.4 void POMP2_Finalize ()

Finalizes the POMP2 adapter. It is inserted at the #pragma pomp inst end.

C.1.3.5 POMP2_Task_handle POMP2_Get_new_task_handle ()

Function that returns a new task handle.

Returns

new task handle

C.1.3.6 size_t POMP2_Get_num_regions ()

Returns the number of instrumented regions.

The instrumenter scans all opari-created include files with nm and greps the POMP2_-
INIT_uuid_numRegions() function calls. Here we return the sum of all numRegions.

Returns

number of instrumented regions

C.1.3.7 const charx POMP2_Get_opari2_version ()
Returns the opari version.

Returns

version string

C.1.3.8 void POMP2_Init()

Initializes the POMP2 adapter. It is inserted at the #pragma pomp inst begin.

C.1.3.9 void POMP2_Init_regions ()

Init all opari-created regions.

The instrumentor scans all opari-created include files with nm and greps the POMP2_-
INIT_uuid_numRegions() function calls. The instrumentor then defines these func-
tions by calling all grepped functions.

C.1.3.10 void POMP2.Off ()

Disables the POMP2 adapter.

25

APPENDIX C. FILE DOCUMENTATION

C.1.3.11 void POMP2.0n ()

Enables the POMP2 adapter.

C.2 pomp2_region _info.h File Reference

This file contains function declarations and structs which handle informations on OpenMP
regions. POMP2_Region_info is used to store these informations. It can be filled with
a cteString by ctcString2RegionInfo().

#include <stdbool.h>

Data Structures

* struct POMP2_Region_info

This struct stores all information on an OpenMP region, like the region type or cor-
responding source lines. The function ctcString2RegionInfo() can be used to fill this
struct with data from a ctcString.

Enumerations

* enum POMP2_Region_type
e enum POMP2_Schedule_type

Functions

* void ctcString2RegionInfo (const char ctcString[], POMP2_Region_info xregionInfo)
¢ void freePOMP2RegionInfoMembers (POMP2_Region_info *regionlnfo)

* const char * pomp2RegionType2String (POMP2_Region_type regionType)

e const char ¥ pomp2ScheduleType2String (POMP2_Schedule_type scheduleType)

C.2.1 Detailed Description

This file contains function declarations and structs which handle informations on OpenMP
regions. POMP2_Region_info is used to store these informations. It can be filled with

a cteString by ctcString2RegionInfo().

Author

Christian Rossel <c.roessel@fz-juelich.de> alpha

Date
Started Fri Mar 20 16:30:45 2009

26

mailto:c.roessel@fz-juelich.de

C.2 pomp2_region_info.h File Reference

C.2.2 Enumeration Type Documentation

C.22.1 enum POMP2_Region_type

POMP2_Region_type

C.22.2 enum POMP2_Schedule_type

type to store the scheduling type of a for worksharing constuct

C.2.3 Function Documentation

C.2.3.1 void ctcString2Regioninfo (const char ctcString[[, POMP2_Region_info
regioninfo)

ctcString2Regionlnfo() fills the POMP2_Region_info object with data read from the
cteString. If the cteString does not comply with the specification, the program aborts
with exit code 1.

Rationale: ctcString2RegionInfo() is used during initialization of the measurement sys-
tem. If an error occurs, it is better to abort than to struggle with undefined behaviour
or guessing the meaning of the broken string.

Note

Can be called from multiple threads concurrently, assuming malloc is thread-safe.
ctcString2RegionInfo() will assign memory to the members of regionInfo. You are
supposed to to release this memory by calling freePOMP2RegionInfoMembers().

Parameters
cteString | A string in the format "lengthxkey=valuex[key=value]+". The length field
is parsed but not used by this implementation. Possible values for key
are listed in ctcTokenMap. The string must at least contain values for
the keys regionType, sscl and escl. Possible values for the key
regionType are listed in regionTypesMap. The format for sscl resp.
escl valuesis "filename:1lineNol:1lineNo2".
regionlnfo | must be a valid object
Postcondition

At least the required attributes (see POMP2_Region_info) are set.
All other members of regionlnfo are set to 0 resp. false resp. POMP2_No_-

schedule.

If regionType=sections than POMP2_Region_info::mNumSections has a

value > 0.

If regionType=region than POMP2_Region_info::mUserRegionName has a

value !=0.

If regionType=critical than POMP2_Region_info::mCriticalName may have
a value !=0.

27

APPENDIX C. FILE DOCUMENTATION

C.2.3.2 void freePOMP2RegioninfoMembers (POMP2_Region_info * regioninfo)
Free the memory of the regionInfo members.

Parameters

regionlnfo \ The regioninfo to be freed.

C.2.3.3 const charx pomp2RegionType2String (POMP2_Region_type regionType)
converts regionType into a string

Parameters

\ regionType \ The regionType to be converted.

Returns

string representation of the region type

C.2.3.4 const char+ pomp2ScheduleType2String (POMP2_Schedule_type scheduleType)
converts scheduleType into a string

Parameters

schedule- | The scheduleType to be converted.
Type

Returns

string representation of the scheduleType

28

Index

ctcString2RegionInfo
pomp?2_region_info.h, 27

freePOMP2RegionInfoMembers
pomp2_region_info.h, 28

mCriticalName
POMP2_Region_info, 20
mEndFileName
POMP2_Region_info, 20
mEndLinel
POMP2_Region_info, 20
mEndLine2
POMP2_Region_info, 20
mHasCollapse
POMP2_Region_info, 20
mHasCopyIn
POMP2_Region_info, 20
mHasCopyPrivate
POMP2_Region_info, 20
mHasFirstPrivate
POMP2_Region_info, 20
mHasIf
POMP2_Region_info, 21
mHasLastPrivate
POMP2_Region_info, 21
mHasNoWait
POMP2_Region_info, 21
mHasNumThreads
POMP2_Region_info, 21
mHasOrdered
POMP2_Region_info, 21
mHasReduction
POMP2_Region_info, 21
mHasUntied
POMP2_Region_info, 21
mNumSections
POMP2_Region_info, 21
mRegionType
POMP2_Region_info, 21
mScheduleType

POMP2_Region_info, 21
mStartFileName
POMP2_Region_info, 22
mStartLinel
POMP2_Region_info, 22
mStartLine2
POMP2_Region_info, 22
mUserGroupName
POMP2_Region_info, 22
mUserRegionName
POMP2_Region_info, 22

POMP2_Assign_handle
pomp2_lib.h, 24
POMP2_Begin
pomp2_lib.h, 24
POMP2_End
pomp2_lib.h, 24
POMP?2_Finalize
pomp2_lib.h, 24
POMP2_Get_new_task handle
pomp2_lib.h, 25
POMP2_Get_num_regions
pomp2_lib.h, 25
POMP2_Get_opari2_version
pomp2_lib.h, 25
POMP2_Init
pomp2_lib.h, 25
POMP2_Init_regions
pomp2_lib.h, 25
pomp2_lib.h, 23
POMP2_Assign_handle, 24
POMP2_Begin, 24
POMP2_End, 24
POMP2_Finalize, 24
POMP2_Get_new_task_handle, 25
POMP2_Get_num_regions, 25
POMP2_Get_opari2_version, 25
POMP2_Init, 25
POMP2_Init_regions, 25
POMP2_Oft, 25

INDEX

POMP2_On, 25
POMP2_Region_handle, 24
POMP2_Off
pomp2_lib.h, 25
POMP2_On
pomp?2_lib.h, 25
POMP2_Region_handle
pomp2_lib.h, 24
POMP2_Region_info, 19
mCriticalName, 20
mEndFileName, 20
mEndLinel, 20
mEndLine2, 20
mHasCollapse, 20
mHasCopyln, 20
mHasCopyPrivate, 20
mHasFirstPrivate, 20
mHaslf, 21
mHasLastPrivate, 21
mHasNoWait, 21
mHasNumThreads, 21
mHasOrdered, 21
mHasReduction, 21
mHasUntied, 21
mNumSections, 21
mRegionType, 21
mScheduleType, 21
mStartFileName, 22
mStartLinel, 22
mStartLine2, 22
mUserGroupName, 22
mUserRegionName, 22
pomp2_region_info.h, 26
ctcString2Regionlnfo, 27
freePOMP2RegionInfoMembers, 28
POMP2_Region_type, 27
POMP2_Schedule_type, 27
pomp2RegionType2String, 28
pomp2ScheduleType2String, 28
POMP2_Region_type
pomp2_region_info.h, 27
POMP2_Schedule_type
pomp?2_region_info.h, 27
pomp2RegionType2String
pomp2_region_info.h, 28
pomp2ScheduleType2String
pomp2_region_info.h, 28

30

	Opari2
	INSTALLATION
	USAGE
	CTC string decoding
	LINKING (startup initialization only)
	POMP user instrumentation
	EXAMPLE
	News
	LINK STEP
	POMP2
	POMP2_Parallel_fork
	pomp_tpd
	Tasking construct

	SUMMARY

	Appendix OPARI2 INSTALL
	Appendix Data Structure Documentation
	POMP2_Region_info Struct Reference
	Detailed Description
	Field Documentation

	Appendix File Documentation
	pomp2_lib.h File Reference
	Detailed Description
	Typedef Documentation
	Function Documentation

	pomp2_region_info.h File Reference
	Detailed Description
	Enumeration Type Documentation
	Function Documentation

